Pantocsekiella, a new centric diatom genus based on morphological and genet-ic studies

Éva Ács1*, Eszter Ari2, Mónika Duleba1, Mirko Dressler3, Sergei I. Genkal4, Ééna Jakó5, Frederic Rime6,7, Luc Ector8 & Keve T. Kiss1

1MTA Centre for Ecological Research, Danube Research Institute, Hungarian Academy of Sciences, H–1113 Budapest, Karolina út 29, Hungary; *Corresponding author email: acs.eva@okologia.mta.hu
2Eötvös Loránd University, Faculty of Science, Department of Genetics, H–1117 Budapest, Pázmány Péter sétány 1/C, Hungary
3University of Rostock, Institute of Bio–Science, Department for Botany and Botanical Garden, Wismarsche Str. 8, D–18057 Rostock, Germany
4Institute Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Yaroslavl, Nekouz, Russia
5Eötvös Loránd University, Faculty of Science, Department of Plant Systematics, Ecology and Theoretical Biology, H–1117 Budapest, Pázmány Péter sétány 1/C, Hungary
6INRA – UMR Carrel, 75 av. de Corzent – BP 511, FR–74203 Thonon les Bains cedex, France
7University of Savoie, UMR CARTEL, FR–73370 Le Bourget du Lac, France
8Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41 rue du Brill, L–4422 Belvaux, Luxembourg

The paper is dedicated for 100th death anniversary of the famous Hungarian diatomologist József Pantocsek (1846–1916).

Abstract: Previous morphological studies showed that the description of the Cyclotella genus was too general and according to new morphological criteria new genera were established based on both recent and fossil taxa (e.g. Discostella, Handmannia, Puncticulata, Tertiarius). Furthermore, previous molecular biological investigations proved that the Cyclotella genus was not monophyletic. Integrating the above mentioned knowledge the former Cyclotella genus has been split into 4 genera (Cyclotella s.s., Discostella, Tertiarius and Lindavia). Based on the position of rimoportula Lindavia genus was formed for involving the species of both the Cyclotella ocellata and C. bodanica lineages. Our morphological and molecular (genetic distance and phylogenetic analyses of rbcL and 18S rDNA sequences) investigations suggested that “Lindavia/Cyclotella ocellata group” could be raised from the Lindavia as a separate genus. Its distinctive morphological features are the followings: striae unequal in length, central area without areolae. We describe the new genus Pantocsekiella gen. nov. and we transferred several Lindavia taxa into it. We also provide an amended diagnosis for the genus Lindavia.

Keywords: Lindavia, morphology, Pantocsekiella gen. nov., rbcL, taxonomy, 18S rDNA

INTRODUCTION

The genus Cyclotella (Brébisson 1838: 19) including many later described and morphologically diverse Cyclotella species was considered as a unitary genus for a long time (see for example Kramer & Lange–Bertalot 1991). Within the genus Cyclotella some different morphological groups were previously recognized by several authors: Lowe (1975), McFaland & Collins (1978), Serheyssol (1981), Servant–Vildary (1986), Logina (1990). Later, more and more taxonomists believed that the genus description is too general and based on new morphological criteria (e.g. shape and position of rimoportula) several new genera were established on the basis of special characteristics of recent and fossil taxa as well. By this way the genera
Tertiarius Håkansson et Khursevich (1997: 21), Puncticulata Håkansson [2002: 21, 112 – later corrected as Handmannia Peragallo in Handmann (1913: 14) based on priority of description – see more detail in Khursevich & Kociolek (2012), and as Lindavia (F. Schett 1899a: 220) De Toni et Forti (1990: 553) regarding both Handmannia and Puncticulata (illegitimate by Nakov et al. 2015 based on the nomenclatural priority), and Discostella HOUK et KLEE (2004: 204–205) were established. Using molecular methods Medlin & Kaczmar- ská (2004) clearly showed that the order Centrales was not monophyletic and two main clades were separated. A recent study (Alverson et al. 2007) reconstructing the phylogenetic relationships within the order Thalas- siosirales showed that the genus Cyclotella (Kützing) Brébisson (1838: 19) was not monophyletic. In their four–gene phylogenetic tree Cyclotella ocellata Pan- tocsek (1901: 104) and C. bodanica Eulestein in Gru- now (1878: 126) were clearly separated from the C. meneghiniana Kützing (1844: 50) group. Jung et al. (2010) pointed out that C. bodanica and C. ocellata belonged to Discostella or to a new genus from a genetic point of view, but they did not study them morphologi- cally. Khursevich & Kociolek (2012) summed up and developed further these morphological groups and a complex diagnosis has been proposed based on the following key characteristics: a) the structure of alveolae, b) the structure, number and location of rimoportula and c) the structure of striae. Based on these criteria 12 morphological groups of Cyclotella taxa were differen- tiated. The 6th and 7th group has been taken for our paper and only species morphologically similar to Cyclotella ocellata are included. Cyclotella ocel- lata and C. tripartita Håkansson (1990a: 78) are from group 6. The following characterization is given for these two species by Khursevich & Kociolek (2012): “These species have circular valves, with slightly or distinctly radially undulate central area. The latter with a pattern of three to nine larger lacunae (depressions) alternating with papillae (as in C. ocellata), or lacunae and papillae are arranged in 6–12 triangular sectors (as in C. tripartita). … Near the center at least from one to several (up to 11) valve face fultoportulae with 2 satellite pores…. Usually one sessile rimoportula is present in the submarginal zone of the valve face or at the end of the central lamina. Alveolae simple. ….” Cyclotella costei Druart et F. Straub (1988: 182), C. gracilis NiKiteeva et Likhosiowy (1994: 350), C. kuetzingiana THWAITES (1848: 169), C. rossii (GRUNOW) HåKANSSON (1990b: 266–267), C. schumannii (GRUNOW) HåKANSSON (1990b: 267) are from group 7. The characterisation is the following: “Valves circular to round, with the central area from nearly flat to more or less transversely undulate, having small and large lacunae (depressions), sometimes they lacking. Besides one to several (up to 5) valve face fultoportulae with 2 satellite pores are present near the center, ….and a single sessile rimoportula is positioned in the submarginal zone of the valve face. … Striae of equal or unequal length. Alveolae simple. …”

Nakov et al. (2015) transferred C. ocellata and related species together with several other centric diatoms (e.g. Handmannia species) to Lindavia genus on the base of rimoportula position, but they raised that future phylogenetic analysis may support the splitting of Lindavia into some other genera.

We think that morphological features indicate that taxa transferred to Lindavia belong to two differ- ent genera. Based on current molecular information Cyclotella/Lindavia ocellata could be the congener of Handmannia bodanica. We used all 18S rRNA gene and rbcL sequences and morphological data from all available sources (clonal cultures, environmental samples, isolated cells, public database and previous publication) to show the distance between the two groups. Our results lead to the description of a new genus, Pantocsekiella. The additional aim of this study was to describe the valve morphology and ultrastructure of this new genus.

Material and Methods

Samples from several sources (Table 1) were subjected to morphological and molecular investigation. The exception was Lake Balaton of which environmental sample was used only in morphological study.

Sampling and sample processing. Phytoplankton samples were dipped ~20 cm below the water surface. From Lake Geneva, an integrated sample (between 0–20 m depths) was taken above the deepest point of the lake. Two clonal cultures of Lindavia (Handmannia) radiosa (Ehrenberg) Kociolek et Khursevich emend Genkal (2013: 347) isolated from Lake Stechlin and Lake Nehmitz (Germany) and one culture of a member of the Cyclotella complenis group (identified as Cyclotella costei Druart et F. Straub 1988: 182–183, on morphological base) from Lake Geneva were established. Clonal cultures were established from single living cells isolated from unfixed material. For culturing conditions see Kistenich et al. (2014). Molecular results of our previous studies (Kistenich et al. 2014, Duleba et al. 2015) were used for comparison; information about details of culturing, molecular methods and phylogenetic analyses are available therein.
Clonal cultures were divided to two subsamples: one for morphological observation and one for DNA analysis. Subsamples for morphological observations were centrifugated to concentrate the frustules that were cleaned with hydrochloric acid and hydrogen peroxide, subsequently washed in distilled water, filtered through a 3 µm-mesh polycarbonate membrane, fixed on SEM stubs and coated with gold. The subsamples for DNA analysis were processed in a short time or were preserved in absolute ethanol (Reanal).

Morphological observations. Morphological observations were done by light microscopy (Olympus IX–70). In addition, the fine structure of the diatoms was observed with Zeiss EVO 10 and Hitachi S–2600N scanning electron microscopes. 30 SEM micrographs were taken for morphological analyses from clonal cultures of *Handmannia radiosa* from Lake Stechlin and Lake Nehmitz.

Molecular methods. Molecular analyses were performed by various authors, therefore methods differed.

Genomic DNA of clone cultures S1 (Lake Stechlin) and NE1 (Lake Nehmitz) was extracted using a QIAGEN DNeasy® Plant Mini kit. For DNA amplification, we used the primers D512for and D978rev (ZIMMERMANN et al. 2011) for partial 18S rDNA regions (V4) and Wawrik for and Wawrik rev (WAWRIK et al. 2002) for partial rbcL DNA. Five microliters of template DNA were mixed with 30 μl ddH2O, 2.25 μl bovine serum albumin (BSA; 10 μg.ml−1), 2.7 μl MgCl2 (25 mM), 1.35 μl dNTPs (10 mM), 1.8 μl of forward and 1.8 μl of reverse primer (10 μM), 4.5 μl polymerase buffer (20×) and 0.6 μl Taq DNA polymerase (5U μl−1) for the polymerase chain reaction (PCR). Values in parentheses indicate the original concentrations of ingredients. PCR programmes were used according to ZIMMERMANN et al. (2011) and WAWRIK et al. (2002). PCR products were visualized in 2% agarose gel and relevant bands were cut out. Gel extraction and purification of PCR products was conducted by applying a QIAquick® Gel Extraction kit. Final products were sequenced twice (forward and reverse) with an ABI/Hitachi 3130xl Genetic Analyzer (Tokyo) using Sanger sequencing (SANGER et al. 1974) with PCR primers as sequence primers.

To extend sequences of the culture S1, additional PCRs were performed using 1F and 1528R primers (MEDI LIN et al. 1988) for 18S rDNA and rbcL66F (ALVERSON et al. 2007) and dp7R (DAUGHERG & ANDERSEN 1997). For rbcL reaction, the mixture contained 1.25 U DreamTaq™ DNA Polymerase (Thermo Scientific), 200 mM of each deoxynucleoside triphosphate (Fermentas), 1X DreamTaq Buffer (Thermo Scientific), 0.325 μM of each primer, 1 μl template in a total volume of 25 μl. PCR amplification used the following cycles: initial denaturation at 98 °C for 4 min, 32 cycles at 94 °C for 1 min, 56 °C for 30 sec, 72 °C for 1.5 min, and a final extension at 72 °C for 10 min. For 18S rDNA reaction, the mixture contained 0.05 U HotMaster Taq Polymerase (5Prime), 0.2 mM of each deoxynucleoside triphosphate (5Prime), 1X DreamTaq Buffer (5Prime), 0.2 μM of each primer, 1 μl template in a total volume of 50 μl. The heat protocol of this reaction was the following: initial denaturation at 94 °C for 5 min, 35 cycles at 94 °C for 1 min, 58 °C for 2 min, 72 °C for 2 min, and a final extension at 72 °C for 10 min. Sequencing reactions with 1F, 1528R (MEDI LIN et al. 1988) Sk–155R (DULEBA et al. 2014) for 18S rDNA and rbcL66F (ALVERSON et al. 2007) and dp7R (DAUGHERG & ANDERSEN 1997) for rbcL, and capillary electrophoreses were performed by Biomi Ltd.
Cells were harvested from the *C. costei* culture by centrifugation. After lysing the cells, nucleic acids were co–precipitated using GenEluteTM–LPA (Sigma–Aldrich) according to the Manufacturer’s instructions, and dissolved in TE buffer. Two gene fragments were amplified in PCR: partial *rbcL* and 18S rDNA. All PCRs were performed using the 1F and 1528R primers (Medlin et al. 1988) for 18S rDNA, DPbcL1 and DPbcL7 primers (Daugbjerg & Andersen 1997) for *rbcL* and according to the authors’ specifications in a PCR thermal cycler (T personal, Biometra, Göttingen, Germany). Additional internal sequencing primers (528F for 18S rDNA, Delwood et al. 1985, NDrbcL6, Daugbjerg & Andersen 1997, 15R, 16F for *rbcL*, Jones et al. 2005) were used to retrieve the complete sequences of *rbcL*. Sanger sequencing was performed by GATC (Konstanz, Germany).

Phylogenetic analysis. 18S rDNA and *rbcL* sequences were aligned to sequences in National Center for Biotechnology Information (NCBI) GenBank database using basic local alignment search tool (BLAST, Altschul et al. 1990) in order to find sequences showing highest similarity with them. The search was performed in the Nucleotide collection database (nr/nt) using Standard Nucleotide BLAST program, megablast (highly similar sequences) algorithm with the default parameter settings.

Beside sequences from samples listed in Table 1, additional, unpublished and published sequences were used (Table 2). These included sequences of a clonal culture from Lake Balaton.

Within and between groups mean uncorrected p–distance values were calculated with MEGA 6 (Tamura et al. 2013). Sequences from the same genus were treated as a group.

The *rbcL* sequences were aligned by codon to sequences downloaded from GenBank using Clustal W implemented in MEGA 6 (Tamura et al. 2013). The 18S rDNA sequences were aligned by secondary structure using SILVA Incremental Aligner (SINA, Pruesse et al. 2012, available at http://www.arb-silva.de/aligner/). ‘Find best DNA models’ option in MEGA 6 software was used to determine the most appropriate substitution model for DNA sequence evolution of each gene. The models proposed by the software based on Bayesian Information Criterion were Tamura–Nei model with gamma distribution for 18S rDNA (Tamura & Nei 1993) and General Time Reversible (GTR) model with gamma distribution and invariant sites for *rbcL* (Rodriguez et al. 1990). Maximum likelihood phylogenetic analyses were run on single–gene datasets in MEGA 6 (Tamura et

<table>
<thead>
<tr>
<th>Species</th>
<th>Culture</th>
<th>Sampling site</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclotella comensis–group</td>
<td>MD 11</td>
<td>Lake Ziegelinnen, Schwerin (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella comensis</td>
<td>NE 3</td>
<td>Lake Nehmitz, Brandenburg (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella comensis–group</td>
<td>JO 2</td>
<td>Jonsvannet (Trondheim, Norway)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella comensis–group</td>
<td>BG 2</td>
<td>Lake Baggersee (Austria)</td>
<td>Kistenich et al. (2014)</td>
</tr>
<tr>
<td>Cyclotella comensis–group</td>
<td>F1</td>
<td>Lake Fernsteinsee (Austria)</td>
<td>Kistenich et al. (2014)</td>
</tr>
<tr>
<td>Cyclotella comensis–group</td>
<td>GUL</td>
<td>Lake Gützsee (Germany)</td>
<td>Kistenich et al. (2014)</td>
</tr>
<tr>
<td>Cyclotella comensis–group</td>
<td>HS1</td>
<td>Lake Hausse (Germany)</td>
<td>Kistenich et al. (2014)</td>
</tr>
<tr>
<td>Cyclotella distinctuens–group</td>
<td>BG 3</td>
<td>Lake Baggersee (Austria)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella meneghiniana–group</td>
<td>W 8</td>
<td>Warnow, Rostock (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella ocellata</td>
<td>BA0</td>
<td>Balaton (Hungary)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Cyclotella ocellata</td>
<td>KK4</td>
<td>Kiesgrube–Krugsdorf</td>
<td>Kistenich et al. (2014)</td>
</tr>
<tr>
<td>Cyclotella ocellata</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lindavia (Handmannia) radiosa–group</td>
<td>DM 1</td>
<td>Demenzsee, OVP (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Stephanodiscus alpinus</td>
<td>SN 3</td>
<td>Schweriner Innensee (Seewarte) (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Stephanodiscus medius</td>
<td>MD 9</td>
<td>Lake Ziegelinnen, Schwerin (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Stephanodiscus parvus–group</td>
<td>HSP 7</td>
<td>Lake Hohen Sprenger (Germany)</td>
<td>unpublished</td>
</tr>
<tr>
<td>Stephanodiscus parvus–group</td>
<td>BA 2</td>
<td>Lake Balaton (Hungary)</td>
<td>unpublished</td>
</tr>
</tbody>
</table>
al. 2013). Bootstrap test was performed in 500 replicates. Bayesian analyses were run on single and combined datasets. Data were partitioned by genes. Posterior probability of distribution was estimated using Metropolis–coupled Markov Chain Monte Carlo (MCMC) as implemented in MrBayes 3.2 (Ronquist et al. 2012). Two runs were started in which a cold and three heated chains were run. Samples were taken in every 100th cycle, 25% of the samples were discarded as burnin. The average standard deviation of split frequencies across independent analyses was used as convergence diagnostic, the analysis was continued until this value decreased below 0.01 or it was between 0.01 and 0.02, but it fluctuated around a value. For all parameters potential scale reduction factor (PSRF) was close to 1, average ESS values were higher than minimum ESS values in all analyses.

RESULTS

Morphological investigation

Two clonal cultures of *Lindavia (Handmannia) radiosa* isolated from Lake Stechlin (Figs 1, 2) and Lake Nehmitz (Figs 3, 4) were newly investigated. Based on these cultures, frustules are disc-shaped; valves are circular, 6–12.9 μm in diameter. The central area of the valve face can be relatively small or large, not depending on the diameter; it is flat or slightly concentrically undulate, convex or concave, externally smooth to colliculate, sometimes radially wrinkled. Striation is fine, 7–9 striae are in 10 μm and unequal in length, central area is polygonal. The striation pattern has a complex alveolar structure; the internal alveolar openings are with alternating 3–7 thin costae between 2 thickened ribs. Each thickened costa bears a marginal fultoportula near the valve margin with two satellite pores positioned laterally. Areolae and central fultoportulae are arranged in radial rows or scattered. The central fultoportulae, externally with a small opening and internally with three satellite pores, are scattered among areolae or are inserted within the radial rows of areolae in the form of 1 ring. Isolated areolae are often present in the valve centre. 1–2 rimoportulae are situated on the valve face in the submarginal zone. The external openings are situated on a hyaline rib formed at the end of shortened stria internally with a sessile labium with a radial oblique or circumferential slit.

Genetic investigation

From the clonal culture of *C. costei* full length of rbcL (1500 nt) and almost full length of 18S rDNA (1699 nt) were acquired. From the two *Lindavia (Handmannia) radiosa* cultures first partial sequences were gained [L. radiosa cultures: rbcL: 506 nucleotides (nt), 18S rDNA: 391 and 399 nt] but later sequences of the culture from Lake Stechlin were extended (rbcL: 1407 nt, 18S rDNA: 1667 nt).

BLAST: According to the BLAST search rbcL sequence of *C. costei* from Lake Geneva showed the highest similarity with *C. ocellata* strain LB8 (99%, 1427 identical nucleotides at the compared 1438 sites; our sequence proved to be too long compared to the ones in GenBank). Its 18S rDNA sequence also showed 99% similarity with *C. ocellata* (1685 identical nucleotides and two gaps at 1699 sites), but reached higher scores (99% similarity, 1688/1699 nt with two gaps) with a group of *Stephanodiscus* (84.5%: 72) and *Cyclostephanos* round ex Theriot et al. (1987a: 346) sequences.

There was not any difference between the two cultures of *Lindavia (Handmannia) radiosa* in the compared regions of either 18S rDNA or rbcL. According to the BLAST search extended rbcL sequence of the *L. radiosa* from Lake Stechlin showed 98% similarity with four *Stephanodiscus* sequences (1372–1375 identical nt at 1407 sites) and *Lindavia (Handmannia) bodanica* (Euleenstein ex Grunow) Nako et al. (2015: 254) J98–1 strain (1371 identical nucleotides at 1404 sites). The 18S rDNA sequence of *L. radiosa* from Lake Stechlin showed 99% similarity (1642–1652 identical nucleotides and one gap at 1667 sites) with several *Stephanodiscus* [including a *Stephanodiscus* strain later renamed as *Praestephanos* triporus (Genkal et G.V. Kuzmin) Tui et J.–S. Ki in Tui et al. (2014: 135)] and *Cyclostephanos* sequences and with *L. bodanica* J98–1 (1648 identical nucleotides and one gap at 1667 sites) and *C. ocellata* LB8 (1645 identical nucleotides and one gap at 1667 sites).

The p–distance values were calculated on two datasets. First, both short and long sequences (those of *C. costei* and *L. radiosa* cultures and the ones listed in Table 1) were also involved. Second, the short sequences were excluded, thus much longer regions could be compared. In general, the p–distance values were lower in longer region of the fewer sequences than in shorter region of the more sequences.

Mean distances within groups: Based on both of all and also on only the long rbcL the mean distance within the *Pantocsiella* genus (all sequences: 0.29%, only the long ones: 0.84%) was lower than within other groups (all sequences: 0.96–6.48%, only the long ones: 0.95–7.50%).

Based on all 18S rDNA the mean distance of this group (0.49%) was relatively low value, two genera [Bacterosira Gran (1900: 114), *Stephanodiscus*, *Cyclostephanos*] showed lower values (0–0.46%), five genera [Shionodiscus, Lindavia (Handmannia), Discostella, Skeletonema Greville (1865: 43), Cyclostephela] showed higher values (0.55–2.80%). Considering only the long sequences, *Pantocsiella* had higher value (0.58%) than *Stephanodiscus*, *Bacterosira* and *Cyclostephanos* (0.11–0.23%) and lower than *Shionodiscus*, *Discostella*, *Lindavia*, *Cyclostephela* and *Skeletonema* (0.96–2.12%).

Mean distances between groups: The rbcL showed
higher genetic distance between the proposed genus *Pantocsekiella* and *Lindavia* (*Handmannia*) than *Stephanodiscus–Lindavia* (*Handmannia*), *Stephanodiscus–Cyclostephanos* distances with and without short sequences. Based on 18S rDNA the *Pantocsekiella–Lindavia* (*Handmannia*) distance was higher than *Cyclostephanos–Pantocsekiella*, *Stephanodiscus–Pantocsekiella*, *Cyclostephanos–Stephanodiscus* distance in both analyses (these distances are indicated with italic numbers on Tables 3 and 4).

Phylogenetic analyses: To improve the reliability of phylogenetic trees short sequences were excluded from these analyses. The phylogenetic tree based on single (Supplementary Figs 1–4) and combined datasets (Fig. 5) showed that the *Pantocsekiella ocellata* and *P. comensis* sequences formed a cluster clearly separated from the clade constituted by the *L. radiosa* and *L. bodanica* sequences.

The genus *Pantocsekiella* appeared to be monophyletic on all trees, therefore establishment of a new genus is reasonable. The closest relative of the *Pantocsekiella* genus was *Lindavia* (*Handmannia*) (Fig. 5, Supplementary Figs 1–4).

New genus description

Pantocsekiella K.T. Kiss et Ács, gen. nov.

Diagnosis: Frustules are disc–shaped, solitary, seldom in short chains. Valves circular or slightly quadrangular, the valve face divided into a polygonal central area and a striated marginal one. The polygonal central area is more or less flat or radially undulate (3–5 undulation) or slightly tangentially undulated. The undulated forms with a pattern of three or more small or large alternating lacunae with or without papillae; this pattern is arranged in 6 or more triangular sectors, or the central area with numerous randomly located lacunae and small punctae which do not penetrate the cell wall. The central area can be relatively small or large, not depending on the diameter. The marginal part of the valve is structured by alveolate striae externally, separated by hyaline strips, striae are straight, unequal in length and a few of them are bifurcated. Simple alveolae are present within the marginal area internally. The inner aperture of the alveolae can be round or elongated. Costae are usually equal in length but those bearing a fultoportula are often shorter. The valve has one or a few rimoportulae situated in the submarginal zone on the costa.
or just below it (sessile internally and round aperture externally); the orientation of the lip varies. Generally, every third to fifth interstria bears a marginal fultoportula but it may occur on each to every 6th interstria. Their internal openings are surrounded by two satellite pores. Valve face fultoportulae (VFP: 1–4) are usually surrounded by two (1–3) satellite pores. In many cases the external openings of VFP are very difficult to observe, because many valves have some punctae irregularly arranged in the central part. Small granules are frequently observed on the interstriae near the margin and found sporadically on the whole valve face.

Cyclotella species differ from Pantocsekiella in arrangement of marginal fultoportulae and rimoporula(e). Rimoporula(e) of Cyclotella situated in the ring of marginal fultoportulae and striae (costae) are equal in length.

Lindavia species differ from Pantocsekiella in structure of central area. Lindavia species have areolae in central area and complex alveolar structure, Pantocsekiella and Cyclotella never.

Type species: Cyclotella ocellata PANTOCSEK (1901), Die Kieselalgen oder Bacillarien des Balaton, p. 104, pl. 15, fig. 318.

Etymology: The new genus has been named after József Pantocsek, the worldwide known famous Hungarian diatomologist, who originally described Cyclotella ocellata.

Systematic emplacement:
Class Coscinodiscophyceae ROUND et CRAWFORD
Subclass Archaeagladiopsiphyceae NIKOLAEV et HARWOOD
Order Stephanodiscales NIKOLAEV et HARWOOD
Family Stephanodiscaceae GLESER et MAKAROVA
Genus Pantocsekiella K.T. KISS et ÁCS gen. nov.

Typus generis: Pantocsekiella ocellata (PANTOCSEK) K.T. KISS et ÁCS, comb. nov.

Pantocsekiella ocellata (PANTOCSEK) K.T. KISS et ÁCS, comb. nov.
Basionym: Cyclotella ocellata PANTOCSEK 1901, Die Kieselalgen oder Bacillarien des Balaton, p. 104, pl. 15, fig. 318.
Synonyms: Cyclotella crucigera PANTOCSEK 1901, p. 104, pl. 15, fig. 325; Cyclotella kuetzingiana var. planetophora FRIEZE in SCHMIDT 1900, pl. 222, figs. 9–12; Cyclotella tibetana HUSTEDT 1922a, p. 117, pl. 9, fig. 19; Cyclotella trichomidea var. parva EUNOMOU-AMELLI 1979, p. 470, figs. 21–25; Lindavia ocellata (PANTOCSEK) NAKOV et al. 2015, p. 256.

General description: Frustules are disc-shaped, valves are circular, rarely slightly quadrangular (in Lake Visovac). The polygonal central area of valve face is more or less flat or radially undulate, 3–5 undulation depending on number of orbiculi depressii (OD, Figs 6–11). Usually, the structure of the central area and marginal area of the valve surface is different on valves with OD but frequently seems almost homogenous on small valves without OD. A slight tangential undulation of central area can be seen on quadrangular and triangular valves at tilted position (Fig. 6). The valve face has OD and papillae zero (Fig. 10) to five, besides OD there are relatively small punctae zero to eleven in number. The central part of the valve can be relatively small or large (2.5–7.3 μm), not depending on the diameter and contains different-sized and spaced collulate protuberances. The marginal part of the valve is structured by alveolate striae externally, separated by hyaline strips, striae are straight, unequal in length and a few of them are bifurcated (Figs 7, 9). Small granules are frequently observed on the interstriae near the margin and found sporadically on the whole valve face.

Type locality: Lake Balaton, Hungary.

Nomenclatural changes
New nomenclatural combinations suggested in connection with the proposed new genus Pantocsekiella are proposed.

Pantocsekiella andancensis (A. EIRLICH) K.T. KISS, ECTOR et ÁCS, comb. nov.

Type locality: Deposits of the Montagne d’Andance, Saint–Bauzile, Ardèche, France.

Pantocsekiella arctica (GENKAL et KHARITONOV) K.T. KISS, GENKAL et ÁCS, comb. nov.
Basionym: Cyclotella arctica GENKAL et KHARITONOV 1996, Cyclotella arctica (Bacillariphyta) – a new species from Lake El’gygytgyn (Chukotka Peninsula). – Botanicheskii Zhurnal 81, p. 69, pl. 1, figs. 1–8, pl. 2, figs. 1–3.
Synonyms: Lindavia arctica (GENKAL et KHARITONOV) NAKOV et al. 2015, p. 254.

Type locality: Lake El’gygytgyn, Chukchi Peninsula,
Fig. 5. Bayesian inferred phylogenetic tree of combined data constructed with Tamura-Nei model (Tamura & Nei 1993) with gamma distribution for 18S rDNA and GTR model (Rodriguez et al. 1990) with gamma distribution and invariant sites for rbcL. In two runs a cold and three heated chains were run for 700000 generations. The average standard deviation of split frequencies across independent analyses was 0.010198 in the last generation. Posterior probability values are indicated at the nodes. Scale bar represents 0.05 substitutions per site.

Ács et al.: Pantocsekiella, a new centric diatom genus
Table 3. Mean p–distances (expressed in percentage) of *rbcL* sequences between genera as groups. First number is the mean distance of all sequences, the comparison involved 415 positions. The second number in parentheses represents the mean distance without short sequences, 1306 positions were included in the analysis. The number in parentheses after genus name indicates the number of species included in each group: the first number in the analysis with all sequences, the second number in analysis without short ones. Intergeneric distances lower than *Pantocsekiella–Lindavia* distance in both analyses are in italic.

<table>
<thead>
<tr>
<th></th>
<th>Pantocsekiella (2/2)</th>
<th>Lindavia (2/2)</th>
<th>Cyclotella (12/12)</th>
<th>Discostella (4/4)</th>
<th>Stephanodiscus (12/10)</th>
<th>Cyclostephanos (6/5)</th>
<th>Bacterosira (2/2)</th>
<th>Shionodiscus (2/2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindavia (2/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.30 (3.41)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclotella (12/12)</td>
<td>8.48 (6.47)</td>
<td>7.60 (6.25)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discostella (4/4)</td>
<td>6.50 (5.26)</td>
<td>5.51 (5.03)</td>
<td>8.18 (6.65)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanodiscus (12/10)</td>
<td>4.95 (3.44)</td>
<td>3.45 (2.79)</td>
<td>7.51 (6.01)</td>
<td>4.74 (4.28)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclostephanos (6/5)</td>
<td>6.36 (4.02)</td>
<td>4.38 (3.25)</td>
<td>7.70 (5.92)</td>
<td>5.00 (4.16)</td>
<td>3.42 (2.17)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterosira (2/2)</td>
<td>5.81 (5.90)</td>
<td>5.48 (5.86)</td>
<td>8.45 (7.15)</td>
<td>5.30 (5.26)</td>
<td>4.34 (5.22)</td>
<td>3.95 (4.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shionodiscus (2/2)</td>
<td>10.12 (7.48)</td>
<td>8.98 (7.35)</td>
<td>10.43 (7.82)</td>
<td>9.58 (7.30)</td>
<td>8.98 (7.16)</td>
<td>9.22 (7.23)</td>
<td>8.73 (7.04)</td>
<td></td>
</tr>
<tr>
<td>Skeletonema (6/6)</td>
<td>8.44 (6.29)</td>
<td>7.31 (6.04)</td>
<td>8.87 (6.96)</td>
<td>7.00 (5.79)</td>
<td>6.95 (5.60)</td>
<td>6.23 (5.39)</td>
<td>5.86 (5.65)</td>
<td>10.36 (7.80)</td>
</tr>
</tbody>
</table>

Table 4. Mean p–distances (expressed in percentage) of 18S rDNA sequences between genera as groups. First number is the mean distance of all sequences, the comparison contained 360 positions. The second number in parentheses represents the mean distance without short sequences, 1564 positions were involved in the analysis. The number in parentheses after genus name indicates the number of species included in each group: the first number in the analysis with all sequences, the second number in analysis without short ones. In the case of *Cyclotella* 18S rDNA sequence of *C. stylorum* was not available hence 11 species could be evaluated in contrast the 12 species in the analysis of *rbcL*. Intergeneric distances lower than *Pantocsekiella–Lindavia* distance in both analyses are in italic.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lindavia (2/2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.76 (1.13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclotella (11/11)</td>
<td>7.70 (4.87)</td>
<td>8.66 (5.21)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discostella (4/4)</td>
<td>1.91 (1.81)</td>
<td>3.26 (2.28)</td>
<td>8.20 (4.73)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephanodiscus (12/10)</td>
<td>1.10 (0.85)</td>
<td>1.39 (1.21)</td>
<td>7.79 (4.54)</td>
<td>2.31 (1.57)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclostephanos (6/5)</td>
<td>1.25 (0.89)</td>
<td>1.55 (1.21)</td>
<td>7.89 (4.54)</td>
<td>2.45 (1.56)</td>
<td>0.33 (0.27)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacterosira (2/2)</td>
<td>2.52 (1.93)</td>
<td>2.71 (2.24)</td>
<td>6.94 (4.82)</td>
<td>2.78 (2.22)</td>
<td>1.94 (1.57)</td>
<td>2.18 (1.56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shionodiscus (2/2)</td>
<td>2.52 (1.79)</td>
<td>2.71 (2.13)</td>
<td>7.89 (4.77)</td>
<td>2.60 (2.10)</td>
<td>1.94 (1.37)</td>
<td>2.18 (1.46)</td>
<td>1.11 (1.15)</td>
<td></td>
</tr>
<tr>
<td>Skeletonema (6/6)</td>
<td>7.00 (5.48)</td>
<td>8.10 (5.96)</td>
<td>10.46 (7.51)</td>
<td>6.94 (5.53)</td>
<td>7.54 (5.53)</td>
<td>7.75 (5.68)</td>
<td>5.69 (5.27)</td>
<td>6.44 (5.45)</td>
</tr>
</tbody>
</table>
Russia.

Pantocsekiella azigzensis (FLOWER et al.) K.T. Kiss et Ács, comb. nov.

Basionym: Cyclotella azigzensis FLOWER et al. 1990, A new species of Cyclotella, C. azigzensis sp. nov., described from modern material collected from upland lakes in Morocco. – Diatom Research 5, p. 254, figs. 1–12, 16–23.

Synonym: Lindavia azigzensis (FLOWER et al.) NAKOV et al. 2015, p. 254.

Type locality: Lake (Aguelmane) Azigza, Morocco.

Pantocsekiella bavarica (KLEE, ROL. SCHMIDT ET JENS MÜLLER) K.T. Kiss et Ács, comb. nov.

Basionym: Cyclotella bavarica KLEE, ROL. SCHMIDT ET JENS MÜLLER 1993, Alleröd diatom assemblages in prealpine hardwater lakes of Bavaria and Austria as preserved by the Laacher See eruption event. – Limnologica 23, p. 135, figs. 6 a–l, 7 a–e.

Synonym: Lindavia bavarica (KLEE, ROL. SCHMIDT ET JENS MÜLLER) NAKOV et al. 2015, p. 254.

Type locality: Lake Starnberg, Bavaria, Germany.

Pantocsekiella chantaica (KUZMINA ET GENKAL) K.T. Kiss, GENKAL ET Ács, comb. nov.

Synonym: Lindavia chantaica (KUZMINA ET GENKAL) NAKOV et al. 2015, p. 254.

Type locality: River Chantaika, Siberia, Russia.

Pantocsekiella comensis (GRUNOW IN VAN HEURCK) K.T. Kiss et Ács, comb. nov.

Basionym: Cyclotella comensis GRUNOW in VAN HEURCK 1882, Synopsis des Diatomées de Belgique. – Atlas, pl. 93, figs. 16, 17.

Synonym: Lindavia comensis (GRUNOW IN VAN HEURCK) NAKOV et al. 2015, p. 254.

Type locality: Lake Como, Italy.

Figs 6–14. SEM micrographs of **Pantocsekiella ocellata**: (6–11) external view; (12–14) internal view; (6) valve with three OD and three papillae, interstriae ornamented with granules (from Lake Balaton); (7) valve with three OD and two papillae (from Lake Himód); (8) valve with three OD (twin OD–s) and three papillae (from Lake Visovac); (9) valve with seven OD and three papillae, interstriae ornamented with granules (from Lake Balaton); (10) valve with four OD without papillae (from Lake Dunaharaszti); (11) slightly quadrangular valve with three OD and three papillae, interstriae ornamented with granules (from Lake Visovac); (12) valve with one valve face fultoportula, costae are equal in length (from Lake Balaton); (13) valve with four valve face fultoportulae, costae bearing marginal fultoportulae are shorter (from Lake Balaton); (14) slightly quadrangular valve with two valve face fultoportulae and three rimoportulae, costae bearing marginal fultoportulae are shorter (from Lake Visovac). Scale bars (14) 10 μm; (6, 7, 9, 11–13) 5 μm; (10) 2.5 μm; (8) 2 μm.
Pantocsekiella costei (Druart et F. Straub) K.T. Kiss et Ács, comb. nov.

Description:
Cyclotella costei Druart et F. Straub 1988, Description de deux nouvelles Cyclotelles (Bacillariophyceae) de milieux alcalins et eutrophes: Cyclotella costei nov. sp. et Cyclotella wuethrichiana nov. sp. – Schweiz. Z. Hydrologie 50, p. 182–183, figs. 7–13.

Synonym: Cyclotella comta var. unipunctata Fréeke in Schmidt 1990, pl. 224, figs. 5–12; C. operculata var. unipunctata Hustedt 1922b, p. 235; C. distinguenda var. unipunctata (Hustedt) Hakansson et J.R. Carter 1990, p. 154; C. cyclocepha Hakansson et J.R. Carter 1990, p. 155, figs. 6–8; C. operculata var. minutus Grunow in Van Heurck 1882, pl. 93, fig. 24; Lindavia costei (Druart et F. Straub) Nakov et al. 2015, p. 255.

Type locality: Lake Paladru (archaeological site of Les Grands Roseaux), France.

Pantocsekiella cretica (J. John et Economou–Amilli) K.T. Kiss et Ács, comb. nov.

Description:
Cyclotella cretica J. John et Economou–Amilli 1990, Cyclotella cretica, a new species of diatom from the island of Crete, Greece. – Diatom Research 5, p. 44, figs. 1–23.

Synonym: Lindavia cretica (J. John et Economou–Amilli) Nakov et al. 2015, p. 255.

Type locality: Lake Kournas, Island of Crete, Greece.

Pantocsekiella delicatula (Hustedt) K.T. Kiss et Ács, comb. nov.

Description:

Synonym: Lindavia delicatula (Hustedt) Nakov et al. 2015, p. 255.

Type locality: Small groundwater Lake Seebachlacke near Kienberg–Gaming, Austria.

Pantocsekiella elymaea (Economou–Amilli) K.T. Kiss et Ács, comb. nov.

Description:

Synonym: Lindavia elymaea (Economou–Amilli) Nakov et al. 2015, p. 255.

Type locality: In fossil Neogene sediment of the Kozani–Aeani–Servia basin, Greece.

Pantocsekiella gordonensis (H.J. Kling et Hakansson) K.T. Kiss et Ács, comb. nov.

Description:

Type locality: Lake Gordon, Canada.

Pantocsekiella gracilis (Nikiteeva et Likoshway) K.T. Kiss et Ács, comb. nov.

Description:
Cyclotella gracilis Nikiteeva et Likoshway 1994, Cyclotella gracilis sp. nov. from Pleistocene material of Lake Baikal, Russia. – Diatom Research 9, p. 350, figs. 2–9.

Synonym: Lindavia gracilis (Nikiteeva et Likoshway) Nakov et al. 2015, p. 255.

Type locality: Underwater Academic Ridge of Lake Baikal (56° 26’ ON, 107° 44’ SE), Russia.

Pantocsekiella granulata (Kulumbavea et Genkal in Genkal & Kulumbavea) K.T. Kiss, Genkal et Ács, comb. nov.

Description:
Cyclotella granulata Kulumbavea et Genkal in Genkal & Kulumbavea 1990, About diatom algae (Centrophyceae) of Song–Köl Lake (Western Tian Shan). – Biologia Vnutrennikh Vod (Biology of Inland Waters), Informatsii Biuletten 86, p. 23, pl. 1, figs. 12–14, pl. 2, figs. 1–6 (in Russian).

Type locality: Song–Köl Lake, Kyrgyzstan (USSR, lacus Sonkulj).

Pantocsekiella hispanica (Houk, C. König et Klee) K.T. Kiss, Ector et Ács, comb. nov.

Description:

Type locality: Lake Schliersee, Germany.

Pantocsekiella horstii (Genkal et Kulikovskiy) K.T. Kiss, Genkal et Ács, comb. nov.

Description:
Cyclotella horstii Genkal et Kulikovskiy 2012, Cyclotella horstii sp. nov. (Bacillariophyta) from Ivanovskoe reservoir (Volga reservoirs, Russia). – Phytotaxa 59, p. 56, figs. 2–34.

Synonym: Lindavia horstii (Genkal et Kulikovskiy) Nakov et al. 2015, p. 255.

Type locality: Lake Banyoles, Spain.

Pantocsekiella indistincta (Benett et Kokolek in Kokolek et al.) K.T. Kiss, Ector et Ács, comb. nov.

Description:

Type locality: Huntington North Reservoir, Utah, 39°20’53.5”N, 110°56’51.9”W, USA.

Pantocsekiella iranica (Nejadsattari et al. in Kheiri et al.) K.T. Kiss, Ector et Ács, comb. nov.

Description:
Cyclotella iranica Nejadsattari et al. in Kheiri et al. 2013, Cyclotella iranica sp. nov. (Bacillariophyta: Coscinodiscophyceae), a new diatom from the Karaj River, Iran. – Phytotaxa 104, p. 37, figs. 2–14.

Synonym: Lindavia iranica (Nejadsattari et al. in Kheiri et al.) Nakov et al. 2015, p. 256.
Type locality: Albourz, Karaj, Karaj River (epipelion), downstream of the Amir Kabir Dam, near the village of Aderan, elevation 1555 m, 35°53’N, 51°4’E, Iran.

Pantocsekiella kuetszingiana (Tiwaites) K.T. Kiss et Ács, comb. nov.
Synonym: Cyclotella krammeri Håkansson 1990b, p. 263, figs. 3–10, 35–41.

Type locality: –Krageholmsjön, Sweden.

Pantocsekiella melnikiae (Genkal et Bondarenko) K.T. Kiss, Genkal et Ács, comb. nov.
Synonym: Lindavia melnikiae (Genkal et Bondarenko) Nakov et al. 2015, p. 256.

Type locality: –Lake Amut (north–eastern region of Lake Baikal), East Siberia, Russia.

Pantocsekiella minuscula (Jurilj) K.T. Kiss et Ács, comb. nov. et stat. nov.
Basionym: Cyclotella thienemannii var. minuscula Jurilj 1954, Flora i vegetacija Dijatomeja Ohridskog Jezera (Flora and vegetation of diatoms from Ohrida Lake in Yugoslavia). – Jugoslavenska Akademija Znanosti i Umjetnosti, Zagreb (Prirodoslovnih istraživanja) 26, p. 112, fig. 6d.

Type locality: —Lake Ohrid, Republic of Macedonia.

Pantocsekiella narochanica (Genkal et Mikheeva) K.T. Kiss, Genkal et Ács, comb. nov.
Basionym: Cyclotella narochanica Genkal et Mikheeva 2006, New for science species from the genus Cyclotella Kützing (Bacillariophyta). – International Journal of Algae 8, p. 77, pl. 1, figs. 1–6, pl. 2, figs. 1–6.

Table 5. The variability of morphological elements of Cyclotella ocellata, (Diam) valve diameter in µm; (Striae) number of striae in 10 µm; (vfp) number of valve face fultoportulae; (sp–vfp) number of satellite pores of valve face fultoportulae; (mfp) arrangement of marginal fultoportulae; (sp–mfp) number of satellite pores of marginal fultoportulae; (rp) number of rimoportulae; (*) according to measurements by microphotographs.

<table>
<thead>
<tr>
<th>Diam</th>
<th>Striae</th>
<th>vfp</th>
<th>sp–vfp</th>
<th>mfp</th>
<th>sp–mfp</th>
<th>rp</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>3–33</td>
<td>10–20</td>
<td>1–3</td>
<td>2</td>
<td></td>
<td></td>
<td>1–3</td>
<td>Kosureenko et al. 1992</td>
</tr>
<tr>
<td>5–27</td>
<td>14–23</td>
<td>1–6</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>Kiss et al. 1996</td>
</tr>
<tr>
<td>5.6–25</td>
<td>14–20</td>
<td>0–5</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>Kiss et al. 1999</td>
</tr>
<tr>
<td>8–13</td>
<td>15–18</td>
<td>1–2</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>Alfinito et al. 2001</td>
</tr>
<tr>
<td>2–18</td>
<td>1–3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Håkansson 2002</td>
</tr>
<tr>
<td>2.5–43</td>
<td>10–19</td>
<td>1–7</td>
<td>2</td>
<td></td>
<td></td>
<td>2</td>
<td>Edlund et al. 2003</td>
</tr>
<tr>
<td>5.5–35.3</td>
<td>10–22</td>
<td>1–6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Genkal & Bondarenko 2004</td>
</tr>
<tr>
<td>3.4–44.2</td>
<td>11–25</td>
<td>1–13</td>
<td>1–3</td>
<td></td>
<td></td>
<td></td>
<td>Genkal & Popovskaya 2008a</td>
</tr>
<tr>
<td>4.4–16.4</td>
<td>18–20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Genkal & Popovskaya 2008b</td>
</tr>
<tr>
<td>7.6–16.4</td>
<td>14–20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Popovskaya & Genkal 2008</td>
</tr>
<tr>
<td>3.5–24.3</td>
<td>12–30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Genkal et al. 2009</td>
</tr>
<tr>
<td>5–22</td>
<td>14–20</td>
<td>1–4</td>
<td>(5)</td>
<td></td>
<td></td>
<td></td>
<td>Houk et al. 2010</td>
</tr>
<tr>
<td>5.3–17.8</td>
<td>14–25</td>
<td>1–9</td>
<td>2*</td>
<td></td>
<td></td>
<td></td>
<td>Genkal & Yarushina 2010</td>
</tr>
<tr>
<td>6–18.6</td>
<td>14–25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kharitonov & Genkal 2010</td>
</tr>
<tr>
<td>8.8–22.2</td>
<td>12–14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Genkal & Bondarenko 2011</td>
</tr>
<tr>
<td>5.5–19</td>
<td>19–22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Solak & Kulikovskiy 2013</td>
</tr>
<tr>
<td>5–19</td>
<td>16–18</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>Čvetkoska et al. 2014</td>
</tr>
<tr>
<td>2–44.2</td>
<td>10–30</td>
<td>0–13</td>
<td>1–3</td>
<td></td>
<td></td>
<td>1</td>
<td>min–max from the table</td>
</tr>
</tbody>
</table>
Synonym: Lindavia narochanica (Genkal et Mikheeva) NAKOV et al. 2015, p. 256.

Type locality: Lake Naroch, Belarus.

Pantocsekiella notata (LOSEVA) K.T. KISS et ÁCS, comb. nov.
Synonym: Lindavia notata (LOSEVA) NAKOV et al. 2015, p. 256.

Type locality: Kama River basin (Upper Pliocene deposits), Omara, Republic of Tatarstan, Russia.

Pantocsekiella paleo–ocellata (VOSSL et VAN DE VIL-VER) K.T. KISS, ECTOR et ÁCS, comb. nov.

Type locality: Lake Kinneret, Israel.

Pantocsekiella palustris (GENKAL et KULIKOVSKYI) K.T. KISS, GENKAL et ÁCS, comb. nov.
Synonym: Lindavia palustris (GENKAL et KULIKOVSKYI) NAKOV et al. 2015, p. 257.

Type locality: Swamp Rdeiskiy, region Novgorod, Russia.

Pantocsekiella paraocellata (CVETKOSKA et al.) K.T. KISS et ÁCS, comb. nov.
Synonym: Lindavia paraocellata (CVETKOSKA et al.) NAKOV et al. 2015, p. 257.

Type locality: Lake Ohrid and Prespa and a description of two new species

Pantocsekiella pseudocomensis (SCHIEFFLER) K.T. KISS et ÁCS, comb. nov.
Basionym: Cyclotella pseudocomensis SCHIEFFLER 1994, Cyclotella pseudocomensis sp. nov. (Bacillariophyceae) aus norddeutschen seen. – Diatom Research 9, p. 356, figs. 1–31.
Synonym: Lindavia pseudocomensis (SCHIEFFLER) NAKOV et al. 2015, p. 257.

Type locality: Lake Prespa, near village Stenje, N 40°56’40”, E 20°54’15”, Republic of Macedonia.

Pantocsekiella reczickiae (KHURSEVICH et LOGINOVA) K.T. KISS et ÁCS, comb. nov.
Synonym: Lindavia reczickiae (KHURSEVICH et LOGINOVA) NAKOV et al. 2015, p. 257.

Type locality: Großer Boberowsee, near Neuglobsow, Brandenburg, Germany.

Pantocsekiella reczickiae var. diversa (LOGINOVA) K.T. KISS et ÁCS, comb. nov.
Basionym: Cyclotella reczickiae var. diversa LOGINOVA 1989, Two new taxa of the genus Cyclotella (Bacillariophyta). – Botanicheskii Zhurnal 74, p. 1781–1782, pl. 2, figs. 3–5, 8–12.
Synonym: Lindavia reczickiae var. diversa (LOGINOVA) NAKOV et al. 2015, p. 258.

Type locality:— Republic of Belarus and Latvia (Lower Pleistocene deposits).

Pantocsekiella rossii (HÅKANSSON) K.T. KISS et ÁCS, comb. nov.
Basionym: Cyclotella rossii HÅKANSSON 1990b: A comparison of Cyclotella krammeri sp. nov. and C. schumannii Håkansson stat. nov. with similar species. – Diatom Research 5, p. 266–267, figs. 18–27, 46–49.
Synonym: Lindavia rossii (HÅKANSSON) NAKOV et al. 2015, p. 258.

Type locality:— Krasnaya Dubrova, Rechitsa district, Byelorussian SSR.

Pantocsekiella schumannii (Grunow in Schneider) K.T. KISS et ÁCS, comb. nov.

Basionym: Cyclotella prespanensis CVETKOSKA et al. 2014, Observations of the genus Cyclotella (Kützing) Brébisson in ancient lakes Ohrid and Prespa and a description of two new species C. paraocellata sp. nov. and C. prespanensis sp. nov. – Nova Hedwigia 98, p. 323, figs. 52–64.
Synonym: Lindavia prespanensis (CVETKOSKA et al.) NAKOV et al. 2015, p. 257.

Type locality: Lake Prespa, near village Stenje, N 40°56’40”, E 20°54’15”, Republic of Macedonia.

Synonyms: Cyclotella schumannii (Grunow) Håkansson 1990b, p. 267, figs. 28–31; Lindavia schumannii (Grunow) Nakov et al. 2015, p. 258.

Type locality: Dombbliten (diatomaceous earth – Kieselguhr von Dombitten), near Zinten (East Prussia), now Kornevo (Russia).

Pantocsekiella strelnikovae (Genkal et Yarishina) K.T. Kiss, Genkal et Ács, comb. nov.

Basionym: Cyclotella strelnikovae Genkal et Yarishina 2004, New species of the genus Cyclotella (Bacillariophyta) from the polar Ural Lakes. – Botanicheskii Zhurnal 89, p. 1498, pl. 1, figs. 1–6, pl. 2, figs. 1–6, pl. 3, figs. 1–6, pl. 4, figs. 1–9.

Synonym: Lindavia strelnikovae (Genkal et Yarishina) Nakov et al. 2015, p. 258.

Type locality:—Lake Upper Ingilor (Polar Ural), Russia.

Pantocsekiella tripartita (Économou–Amilli) K.T. Kiss et Ács, comb. nov.

Synonym: Lindavia tripartita (Économou–Amilli) Nakov et al. 2015, p. 259.

Type locality: Lake Trichonis, Greece.

Pantocsekiella wuethrichiana (Druart et F. Straub) K.T. Kiss et Ács, comb. nov.

Basionym: Cyclotella wuethrichiana Druart et F. Straub 1988, Description de deux nouvelles Cyclotelles (Bacillariophyceae) de milieux alcalins et eutrophes: Cyclotella costei nov. sp. et Cyclotella wuethrichiana nov. sp. – Schweiz. Z. Hydrol. 50, p. 186, figs. 1, 2, 4, 6, 14, 16.

Synonym: Lindavia wuethrichiana (Druart et F. Straub) Nakov et al. 2015, p. 259.

Type locality: Lake Le Loclat, near Neuchâtel, Switzerland.

Discussion

For the supplementary description of the type species of the genus Pantocsekiella, we relied pronouncedly on the findings of the studies in the recent decades beside our previous researches. These investigations presented the detailed electron microscope analyses of Cyclotella ocellata (the most important investigations are: Lowe 1975; Genkal & Kuzmin 1979; Genkal & Zagorenko 1987; Klee & Steinberg 1987; Håkansson 1990b; Hegewald & Hindáková 1997; Knie & Hubener 2007; Cherepanova et al. 2010 and the references listed in the Table 5) showing the morphological features of the species, and proving the remarkable variability and heterovalvate character of the valve face structure. It is notable that specimens of the genus Pantocsekiella having small diameter resemble to each other from outside (e.g. Cyclotella ocellata: Genkal & Zagorenko 1987, figs. p–s; C. hispanica: Kiss et al. 2002, figs. 7, 8; C. comensis: Scheffler & Morabito 2003, figs. 18–20, 24).

When the former Centrales order was divided into two clades (Mediophyceae and Coscinosidocystiphyceae) based on molecular, cytological and morphological results, rimoportula and marginal fultoportula were important morphological features (Medlin & Ka-

Figs 15–17. LM micrographs of characteristic species for Cyclotella (C. meneghiniana), Pantocsekiella (P. ocellata) and Lindavia (L. radiosa) genera. Scale bars (15) 10 μm; (16, 17) 5 μm.
Shape and position of rimoportula is characteristic to the Cyclorella meneghiniana group (including C. atomus Hustedt 1937: 143), C. cryptica Remann et al. (1963: 82), C. choctawhatcheeana Prasad in Prasad et al. (1990: 419), C. distinguenda Hustedt 1927: 320), C. littoralis C.B. Lang et Syvertsen (1989: 343–344), C. quillensis L.W. Bailey (1921: 159), C. striata (Kützing) Grunow in Cleve et Grunow (1880: 119), see Fig. 5, in phylogenetic tree]; it is situated on the edge arising from the valve mantle costa internally. Marginal fultoportulae can be found also on costae that are identical. Previously Cyclorella involved the Discostaella species that were later separated as a distinct genus based on both morphological (Houk & Klee 2004) and phylogenetic evidences (Jun. et al. 2010). The rimoportula of Discostaella can be found also on the edge, on the costae, however, the marginal fultoportulae are situated between costae. The rimoportulae are usually sessile, rarely petiolate.

Nakov et al. (2015) identified the rimoportula position as a synapomorphy for the Cyclorella comta and C. ocellata groups and they transferred all taxa showing this synapomorphy into the genus Lindavia. As they cited Theriot et al. (1987b) “from a phylogenetic perspective, both areolae and fultoportulae on the valve face are problematic because both are plesiomorphic within Thalassiosira”, but the cited paper does not contain such statement. We consider that the areolae on the valve face with domed cribrum are apomorphic characters, not plesiomorphic, because they did not appear in the Pantocsekiella yet. Based on the phylogenetic tree of Alverson (2014) those groups having these features (e.g. Stephanodiscus, Cyclostephanois) diverged later than those ones lacking areolae on the valve face (e.g. Cyclorella sensu stricto).

In Handmannia genus which were also transferred to Lindavia by Nakov et al. (2015) the areolae in the central area of valve face are covered by domed cribrum and there are several valve face fultoportulae on several species (e.g. H. comta (Ehrenberg) Kociolek & Khursevich in Khursevich & Kociolek 2012: 339)), or there are only areolae (e.g. H. glabriuscula (Grunow) Kociolek et Khursevich in Khursevich & Kociolek 2012: 339)). Comparing the two species under SEM shows that Pantocsekiella ocellata does not possess these important characteristics of the Handmannia (Puncticulata) genus. Species of the “Cyclorella ocellata” group can have more than one valve face fultoportulae, but nothing else penetrate the central area of the valve face. Kociolek & Williams (2015) pointed out that “it would follow that all the taxa to be included in that group should have the diagnostic feature(s)” and draw attention to the importance of monophyly for describing new genera.

Several studies searched for a barcode that can be used for diatom species identification [e.g. the V4 region of 18S rDNA, Zimmermann et al. (2011) and a region at the 3’ end of rbcL, Hamshier et al. (2011)]. For precise identification an appropriate threshold is needed. Some authors tried to determine a threshold at species level on certain markers (e.g. Luddington et al. 2012), but it proved to be difficult (Rimet et al. 2014).

Establishing a threshold at genus level is more difficult because “genera form wider taxonomic groups than species do and include different lineages” (Kermarrec et al. 2014). Examining reference libraries Kermarrec et al. (2014) attempted to define inter-/intraspecies and inter-/intragenic thresholds for assigning genus and species names to sequences from benthic communities. They tested the thresholds on mock community with known composition (mainly pennates). They obtained the best estimation of the real community composition using 99% sequence identity threshold for 18S rDNA at both levels, 99% species and 98% genus threshold for rbcL. The read selection criteria used for species was probably too strict for the assignment of genus names. Mean distance of Pantocsekiella group from all other genera studied was above 2% in the case of rbcL. This was true for pairwise distances. In the case of the long 18S rDNA the mean distance of Pantocsekiella from Cyclostephanois and Stephanodiscus was under 1% (0.89 % and 0.85 %, respectively). Pairwise distances of Pantocsekiella with most of Stephanodiscus and Cyclostephanois sequences as well as Praestephanos triporus were below 1% (0.56–0.84% in all sequences, 0.54–0.94 %). It should be considered that Kermarrec et al. (2014) defined thresholds mostly based on pennates. According to Kermarrec et al. (2014), identity threshold applicable to all diatom taxa is difficult to establish because diatom lineages have not all evolved at the same rate. Investigating the 333 nt of 18S rDNA including V4 region of 26 genera in orders Thalassiosirales, Lithodesmiales and Cymatosirales Luddington et al. (2012) found interspecific p-distance ranged from 0.001–0.235 (0.1–23.5%). In the analysis of all 18S rDNA sequences the mean distance of Pantocsekiella from Lindavia (Handmannia) (1.76% in the 360 nt region) the sister group of Pantocsekiella (Fig. 5) fit into this range, but it was under the 2% threshold that Luddington et al. (2012) set for species identification. Comparing of Cyclorella comensis group to Cyclostephanois delicatus (Genkal) Casper & Scheffler (1990: 311) and Stephanodiscus alpinus Hustedt 1942: 412) based on similar region of 18S rDNA Kistenich et al. (2014) also found interspecific distance lower than 2% (0.74%). The Pantocsekiella – Stephanodiscus and Pantocsekiella – Cyclostephanois distance in our analysis with more sequences from both genera (1.10% and 1.25%, respectively) exceeded this value but remained under 2%.

In partial region (507 nt) of rbcL Kistenich et al. (2014) detected 4.54–6.11% interspecific distance.
Although in the analysis of all rbcL sequences, *Lindavia* (Handmannia) – Pantocekiella distance (4.30%) remained below this range, *Pantocekiella* – *Stephanodiscus* distance (4.95%) fell into it and *Pantocekiella* – *Cyclostephanos* distance (6.36%) exceeded it. It should be noted that *Pantocekiella* sequence from Lake Himód was shifted with 105 nt in 3’ direction comparing to those of *Kistenich* et al. (2014), therefore the comparison was possible on the overlapping 402 nt region.

Kü (2009) and Jung et al. (2010) investigated the relationship of the genera *Cyclotella*, *Discostella* and *Stephanodiscus* using almost full–length of 18S rDNA (1689 and 1704 sites, respectively). The results of their p–distance and phylogenetic analyses showed the significant separation of the three genera. However, these studies extended to only the *C. meneghiniana* group within the *Cyclotella* genus. They excluded *C. ocellata* and *C. bodanica* because they considered these species as belonging to *Discostella* or a new genus (Jung et al. 2010). The corrected p-distance calculated using Kimura two–parameter model was 5.4±0.45 between *Stephanodiscus* and *Cyclotella*, 1.7±0.28 between *Stephanodiscus* and *Discostella* (Kü 2009), the similarity between *Discostella* and *Cyclotella* was 94.4±0.5% (Jung et al. 2010). The mean distance calculated with the same model on the long region (1564 nt) of 18S rDNA between *Cyclotella* and *Discostella* was 4.89%; between *Cyclotella* and *Stephanodiscus* it was 4.69% and between *Discostella* and *Stephanodiscus* 1.60%. The Pantocekiella–Lindavia (Handmannia) distance with this method was 1.15%.

One *Stephanodiscus* strain investigated by Kü (2009) has been recently transferred into the new genus *Praestephanos*, as *P. triporus* (Tui et al. 2014). This genus was described based on morphological characters (position of rimoportulae and marginal fultoportulae, pattern of areolae) and its unique position on phylogenetic tree based on four markers (SSU and LSU rDNA, *rbcL* and *psbC*). *Praestephanos triporus* showed 0.56–1.12% pairwise p–distance in the short and 0.96–1.12% distance in the long region of 18S rDNA and 3.86–4.59% pairwise p–distance in the short and 3.00–3.67% distance in the long region of *rbcL* from the members of Pantocekiella.

The topology of both maximum likelihood and Bayesian inferred phylogenetic trees differed from previously published Thalassiosirales trees (Alverson et al. 2007, Alverson 2014). A main difference was the lack of monophyly of *Stephanodiscus* and within it *Cyclostephanos* species in the 18S rDNA tree suggesting that two genera cannot be distinguished by the studied region that may have not enough phylogenetic signal in this group of diatoms. The mean distance between these groups was low in the studied region (0.33) that was compared among all used sequences. This region that contained V4 subregion was found to show very low variation within the *Stephanodiscus* (Zimmermann et al. 2011). The distance was also low in the long stretch (0.27). Most of the differences occurred only in one sequence. Comparing just *Cyclostephanos* and *Stephanodiscus* sequences six parsimony informative sites were found with MEGA software (at parsimony informative sites at least two different nucleotides occur each of them in at least two taxa). At these sites the substitutions were characteristic only to a group of sequences but none of the differences separated the two genera (e.g. at 188th position all *Cyclostephanos*, but *C. tholiformis* had guanine, *Stephanodiscus* sequences and *C. tholiformis* contained adenine; at 239th position all *Cyclostephanos* but along with *S. hantzschii* WTC21 contained cytosine instead of timine). Based on the phylogenetic tree of Alverson (2014) *Stephanodiscus* and *Cyclostephanos* are closely related, relatively recently diverged genera that may explain the low intergeneric variation. In Alverson et al. (2007) the monophyly of *Cyclostephanos* and *Stephanodiscus* was proved based on combined dataset of 18S and 28S rDNA. The 18S rDNA alone may not be suitable for separating these genera, just in combination with another gene e.g. 28S rDNA or as in our case with *rbcL*. Differences at four sites in the extended sequenced region of 18S rDNA separated *Lindavia* (Handmannia) from *Pantocekiella*.

In the case of *rbcL* the monophyly of *Stephanodiscus* was confused by *Praestephanos triporus* grouping with *Stephanodiscus* sequences. This genus was established from species that drifted from *Stephanodiscus* (Tui et al. 2014). The sequence used was also originally identified as *Stephanodiscus*.

Based on all above mentioned results, not only morphological but also molecular investigations clarified that the former *Cyclotella* genus was needed to be divided into several new genera, as did Nakov et al. (2015). *Cyclotella ocellata* and *C. bodanica* represented lineages separate from the *C. meneghiniana* group (Alverson et al. 2007). Previously the sequences of only two species *Cyclotella* (Lindavia) ocellata and *Cyclotella* (*Puncticulata/Handmannia/Lindavia*) bodanica were available beside the *Cyclotella meneghiniana* group. To investigate if *C. ocellata* belonged to the genus *Lindavia* we supplemented previous data with sequences of additional species (*Cyclotella commensis* group and *Handmannia radiosa*). Our results indicated that *Cyclotella ocellata* did not belong to either *Puncticulata* (*Handmannia/Lindavia*) or *Cyclotella* or other established genera (because of the high genetic distance). Therefore we propose the drift of the species into a new genus, *Pantocekiella* as its generic type species.

Differential diagnosis of the three genera

Cyclotella: striae are of equal length, central area round (Figs 15, 18); alveolae simple (Fig. 19); a single rimoportula (rarely two) arising near the margin from...
Figs 18–23. SEM micrographs of characteristic species for Cyclotella, Lindavia (Handmannia) and Pantocsekiella genera (outside and inside view): (18, 19) *C. meneghiniana*, white arrow: rimoportula; (20, 21) *L. radiosa*, white arrow: rimoportula; black arrow: domed cribra on inside view and foramina on outside view; (22, 23) *P. ocellata*, white arrow: rimoportula. Scale bars (18) 10 μm; (19, 22, 23) 5 μm; (20, 21) 2 μm.
the valve mantle costa internally (Fig. 19) and opening by distinct round aperture or slit externally.

Lindavia (Handmannia): striae of unequal length (Figs 17, 20, 21), central area polygonal; presence of valve face fultoportulae and areolae or only areolae; areolae with internal domed cribra and external foramina (Figs 20, 21); presence of a complex alveolar structure composed primary thick costae internally bearing marginal fultoportulae, secondary thin costae which can be forked (Fig. 21); sessilerimoportula on the valve face in the submarginal zone (Figs 20, 21).

Puncticulata comta—striae of unequal length (Figs 16, 22), central area polygonal; flat or radially or tangentially undulated; areolae simple (Fig. 23); one or a few sessilerimoportulae are present in the submarginal zone of the valve face or at the end of the central lamina (Fig. 23). Internally no any structure (except VFP) penetrates the central part of cell wall.

In the literature uncertainty can be observed about the characterisation of “Puncticulata comta”, the “Puncticulata” genus and the “Cyclotella ocel mata” group, their coherency or separation. LOWE (1975) rated the Cyclotella genus into three groups (C. meneghiniana group, C. comta group and C. stelligera group). Within the C. comta group (“…the comta group, includes C. comta, C. antiqua, C. ocellata and C. michigianiana”) “Cyclotella comta and C. antiqua are very closely related and may constitute a subgroup of the comta group.” This means that he did not consider C. ocellata to belong to the comta subgroup.

HÅKANSSON (2002) mentioned the following as the important characteristic of the genus Puncticulata: “Central area … with both areolae and fultoportulae or areolae only or fultoportulae only.” The latter feature (fultoportulae only) can be observed on two species: P. notata (LOSEVA) HÅKANSSON (2002: 126) and P. kurdica (HÅKANSSON) HÅKANSSON (2002: 129). Regarding to their morphological properties these two species significantly differ from the other species of the genus. On SEM photographs the external valve face is confusingly similar to the C. ocellata. On P. notata recordings (HÅKANSSON 2002: figs 475–478) 3–4 orbiculi depressi can be seen, on the internal side of the valve the structure of the alveolar chambers and costae actually resembles to that of the genus Puncticulata (HÅKANSSON 2002:figs 479–481), but GENKAI & POPOVSKAYA (2008a: figs. 26–32) found similar alveolar chamber/costa structure in C. ocellata. On P. kurdica recordings (HÅKANSSON 2002, figs 482–485) 4–6 orbiculi depressi can be seen; on the internal side of the valve the structure of the alveolar chambers and costae correspond with that of C. ocellata (HÅKANSSON 2002, figs 487, 488), and the many valve face fultoportulae are also characteristic to C. ocellata (GENKAI & POPOVSKAYA 2008a). For all these reasons, we consider that P. notata and P. kurdica could not be classified to the Puncticulata genus.

This opinion is supported by the fact that KHURSEVIC & KOČIOLEK (2012) wrote the following among the characteristics of the genus Handmannia: “… presence of both areolae and valve face fultoportulae, or areolae only within the central area”. They did not rank either C. kurdica or C. notata to the genus Handmannia, the latter was rated into the 12th Cyclotella group. NAKOV et al. (2015) synonymized those as Lindavia based on the nomenclatural priority.

Identification key – Distinctive light microscopic characters of the three genera

1. Striae of equal length … Cyclotella
 – Striae of unequal length … 2
2. Central area with areolae … Lindavia (Handmannia)
 – Central area without areolae … Punctocsiella

Amended diagnosis of Lindavia genus is based on several works where Lindavia, Puncticulata, Handmannia were morphologically characterized (SCHÜTT 1989a, b; De TONI & FORTI 1900; HANDMANN 1913; HÅKANSSON 2002; KHURSEVIC & KOČIOLEK 2012; NAKOV et al. 2015).

Lindavia (F. SCHÜTT) De TONI ET FORTI

Basionym: Cyclotella socialis F. SCHÜTT (1899a): Berichte der Deutschen Botanischen Gesellschaft 17: 220. Figures: Abbildungen der Jahrbücher für wissenschaftliche Botanik, pl. 7, figs. 23–35, pl. 8, figs. 37, 40. 1899.

Diagnosis: Frustules are disc-shaped, solitary, seldom in short chains. Valves circular or oval–elliptic or oblong–elliptic, with almost flat, concave or convex, or concentrically undulate, or tangentially undulate central area and a striated marginal zone. Central area slightly polygonal, with areolae and fultoportulae or only areolae. Loculate areolae (internally with domed cribra) form distinct radial rows, sometimes parallel rows or groups (without distinct order). Fultoportulae on the valve face with three satellite pores (rarely with two or four) are located in areolar rows, replacing one–several areolae in every row or sometimes in the slope of the central undulation. The marginal part of the valve is structured by long or short striae externally, separated by hyaline strips; striae are straight, more or less equal in length and a few of them are bifurcated. The striae of the marginal area are composed of small areolae, mostly increasing in numbers towards and onto the mantle. Complex alveolae are present within the marginal area internally. The inner aperture of the alveolae is elongated. Costae are usually equal in length but those bearing a fultoportula are often shorter and thick. There are secondary thin costae between thick ones, which can be forked–branched in some species. Fultoportulae situated on the mantle, externally with slightly thickened apertures on the slightly thicker interstriae, internally with two satellite pores. The valve has one or a few rimoportulae situated in the submarginal zone on
the costa or just below it, or on the valve face (sessile internally and round or slit-like aperture externally); the orientation of the lip varies.

Type species: Lindavia socialis (F. SCHÜTT) DE TONI et FORTI (1900: 553).

Acknowledgements

References

Brébisson, A. de (1838): Considérations sur les Diatomées et essai d’une classification des genres et des espèces appartenant à cette famille. – 20 pp., Brée l’Ainé

doi.org/10.1080/0269249X.1990.9705117

The definition of a diatom genus:

Supplementary material
the following supplementary material is available for this article:

Fig. S1. Bayesian inferred phylogenetic tree for 18S rDNA sequences constructed using Tamura 3–parameter model (TAMU-RA & NEI 1993) with gamma distribution.

Fig. S2. Maximum likelihood phylogenetic tree for 18S rDNA constructed using Tamura 3–parameter model (TAMURA & NEI 1993) with gamma distribution.

Fig S3. Bayesian inferred phylogenetic tree for rbcL sequences constructed using GTR model (Rodríguez et al. 1990) with gamma distribution and invariant sites.

Fig S4. Maximum likelihood phylogenetic tree constructed using GTR model (Rodríguez et al. 1990) with gamma distribution and invariant sites.

This material is available as part of the online article (http://fottea.czechphycoligy.cz/contents)