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Abstract: Molecular systematics uses currently available data to produce the best approximation to the true 
(un–observable) phylogeny of a taxon. Molecular phylogeny complements morphological identification and 
classification of organisms, in order to infer their evolutionary relationships. In the current era dominated 
by cultivation–independent surveys, testing the potential technical and analytical pitfalls and limitations of 
environmental DNA surveys appears crucial. Sequence–based phylogenetic reconstructions rely on three main 
steps: alignment, alignment curation and tree building. Several independent options and settings can be adopted 
at each step, but it is well known that their choice (or combination) can significantly affect the topology of 
the phylogenetic tree obtained and skew the reliability of the resultant systematics. For the present study, five 
alignment algorithms, two curation options and three tree–building methods were used to infer the phylogeny 
of three orders of cyanobacteria, based on four validated markers widely used for this phylum: 16S rRNA, 
16S–23S ITS, cpcBA–IGS and rpoC1. Compared to the alignment algorithm or the curation stringency used, 
the tree–building method was found to have the greatest effect on the resultant tree topology. This result was 
consistent for all loci, including the genetically–constrained (protein–coding) locus rpoC1. The reproducibility 
of the tree topology was clearly visualized and measured for each locus. This paper presents pitfalls in 
cyanobacteria systematics and implements a simple and rapid method, applicable to any locus and organism, to 
identify aberrant results and assess the reproducibility of phylogenetic reconstructions.
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Introduction

Cyanobacteria are ancient photosynthetic bacteria with 
a cosmopolitan distribution, important ecological roles 
and global socio–economic relevance (Whitton & 
Potts 2000; Sciuto & Moro 2015). Members of this 
phylum have traditionally been identified and classi-
fied based on morphological characteristics, which 
determined their taxonomic distinction based on phe-
notypic properties (Castenholz 2001; Palinska & 
Surosz 2014) .

Pleomorphism, uncultivability, cryptic diversi-
ty, convergent evolution and other factors have greatly 
limited the reliability of this approach resulting in dis-
crepancies, misnomers, confusing nomenclature and a 
puzzling systematics (Lyra et al. 2001; Komárek 2006; 
2010; Palinska & Surosz 2014). To alleviate these lim-
itations, DNA– or protein–based methods complemen-
tary to morphological analyses have been developed 

for identification, typing, traceability and classification 
(Willame et al. 2006; Valerio et al. 2009). The small 
ribosomal subunit RNA (16S rRNA) gene and its inter-
nal transcribed spacer (ITS) region, the protein–coding 
gamma subunit of the DNA–dependent RNA poly-
merase (rpoC1), the phycocyanin operon, consisting of 
the two cpcB–cpcA genes and their variable intergenic 
region (cpcBA–IGS) are commonly used phylogenetic 
markers (Neilan 1995; Fergusson & Saint 2000; Cas-
tenholz 2001; Coenye & Vandamme 2003; Komárek 
2006; Lee et al. 2014). The 16S rRNA to 23S rRNA 
ribosomal DNA internal transcribed spacer region 
(16S–23S ITS) has also been suggested to be useful, 
for lower level discrimination of cyanobacterial taxa 
(Otsuka et al. 1999; Premanandh et al. 2006). 

Once the sequences are obtained, the evolu-
tionary relationships can be inferred by means of phy-
logenetic reconstructions, consisting of three main 
steps: alignment, alignment curation and tree building 
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(Holder & Lewis 2003; Harrison & Langdale 2006; 
Yang & Rannala 2012; De Bruyn et al. 2014). 

During the first step, gaps are added to a matrix 
of data so that the nucleotides in one column are related 
to each other by descent from a common ancestral resi-
due (Holder & Lewis 2003). ClustalW (Thompson et 
al. 1994) is probably the most widely used classical 
progressive alignment algorithm (Landan & Graur 
2009); MAFFT (Katoh et al. 2002) and MUSCLE 
(Edgar 2004) are faster, progressive aligners including 
iteration and refinement, while PRANK (Löytynoja 
2014) and PAGAN (Löytynoja et al. 2012) also distin-
guish between insertions, deletions and vary the costs 
between opening and extending gaps based on phylo-
genetic information.

Highly variable regions may be characterized 
by high rates of insertion or deletion of bases (INDELs) 
in the aligned sequences, which the algorithms resolve 
by introducing gaps of various lengths and frequen-
cies. Alignment errors/artefacts and/or discrepancies 
are known to accumulate at these regions (Misof et al. 
2014) and have been shown to significantly change the 
outcome of the phylogenetic reconstruction (Morri-
son & Ellis 1997; Ogden & Rosenberg 2006; Landan 
& Graur 2009; Liu et al. 2009). Consequently, these 
error prone sites may be removed either manually or 
automatically by programs like Gblocks (Castresana 
2000; Talavera & Castresana 2007), REAP (Hart-
mann & Vision 2008) or NOISY (Dress et al. 2008). 

During the final step, a phylogenetic tree, (a 
graph simulating the ancestor–descendant relationships 
between organisms or gene sequences), is constructed 
using a variety of methods based on either distance or 
characters (Yang & Rannala 2012). Computation-
ally–fast distance–based methods such as neighbour–
joining (NJ), calculate the pairwise distances between 
sequences and group the most similar sequences ac-
cordingly (Van de Peer 2009). As the molecular clock 
hypothesis doesn’t always hold, the simplicity of this 
method underestimates the complexity of the phylo-
genetic–inference problem and approaches like maxi-
mum likelihood (ML) or Bayesian inference (BI), that 
take into account rate variation across lineages, were 
introduced to obtain better estimates of divergence 
times (Holder & Lewis 2003). 

Phylogenetic reconstructions can be used to 
identify unknown isolates, track infections or contami-
nations, discover novel taxa or support classifications, 
formulated on the basis of characters of a different 
nature (e.g., molecular‒ and morphological‒systemat-
ics). It should be noted however, that the obtained trees 
(consisting of relationships and divergence times) are 
not directly observed, but are instead statistically–in-
ferred from available data. This implies that the robust-
ness of the reconstruction can vary and that, starting 
from a given dataset, multiple (sometimes equally 
plausible) scenarios can be obtained. While tree scores 
can be used to identify the most probable tree (e.g., the 

plausibility of the mutations that a particular tree would 
require to explain the data), the congruency between 
the inferred (unobservable) molecular phylogeny of a 
given taxon and the generated systematics cannot be 
easily tested. For this reason, noting only tree scores 
and branch statistical supports gives only partial and/or 
skewed indications of the “true” evolutionary relation-
ships between the various lineages. In this context, ac-
cepting a tree without assessing the variation of all the 
topologies obtained experimentally can be inadequate 
(Morrison & Ellis 1997).

The goal of the present study was to investigate 
the combined effect of alignment algorithm, align-
ment curation option and tree–building method, on 
the reproducibility of phylogenetic reconstructions of 
cyanobacterial taxa with the most commonly used and 
validated phylogenetic markers: 16S rRNA, rpoC1, 
cpcBA–IGS and 16S–23S ITS. 

Materials and Methods

Isolation, cultivation and sequencing of cyanobacterial 
isolates. Forty–nine cyanobacteria isolates from a variety of 
freshwater habitats (n = 20) surveyed in Western Australia 
were isolated, cultured and DNA was extracted as described 
previously (Lee et al. 2014). Partial fragments of the 16S 
rRNA hypervariable region (467 bp), rpoC1 (612 bp), 16S–
23S interspacer region (variable length) and the phycocya-
nin intergenic spacer region (cpcBA–IGS) (approximately 
585 bp) were amplified as previously described (Palenik & 
Haselkorn 1992; Robertson et al. 2001; Janse et al. 2003; 
McGregor & Rasmussen 2008). Amplicons corresponding 
to the expected length were excised from the electrophoresis 
gel and sequenced on an Applied Biosystem 3730 DNA Ana-
lyzer (Applied Biosystems, USA).

Multiple sequence alignment and curation. Figure 1 gives 
an overview of the study workflow. The input set consisted of 
globally–trimmed sequences (16S rRNA: n = 112; 16S–23S 
ITS: n = 87; cpcBA–IGS: n = 95; rpoC1: n = 94), generated 
in our laboratory or retrieved from GenBank by BLAST–
searches. Global trimming of the input set was performed 
manually in MEGA5 (Tamura et al. 2011) to eliminate ter-
minal gaps, by constructing temporary ClustalW alignments 
(Larkin et al. 2007) before global trimming. The temporary 
alignments were then dissolved and five new alignments 
were generated under the default settings of each program: 
ClustalW v.1.82, MAFFT v.6.712, MUSCLE v.3.7, PAGAN 
v.0.44 and PRANK v.100223 (Katoh et al. 2002; Edgar 
2004; Larkin et al. 2007; Löytynoja et al. 2012; Löytynoja 
2014). Alignments were curated (i.e., degapped), remotely 
(Dereeper et al. 2008), by Gblocks v.0.91b (Talavera & 
Castresana 2007) on default settings. The p–distance scores 
for all (uncurated and curated) alignments were then com-
puted by the PAST software v.3.08 (Hammer et al. 2001). 

Tree–building and multivariate analyses. The appropri-
ate models of nucleotide substitution for each alignment 
was determined using JModelTest2 (Darriba et al. 2012) 
on the CIPRES Science Gateway v.3.3 (Miller et al. 2010). 
Phylogenetic trees were constructed using distance (neigh-



bour–joining‒NJ), maximum likelihood (ML), and Bayesian 
inference (BI), using MEGA5, RAxML v.8.0 or SiMBa v.1.0 
(Stamatakis et al. 2008; Tamura et al. 2011; Ronquist et al. 
2012; Mishra & Thines 2014). Optimal nucleotide substitu-
tion models and gamma‒ and invariable‒rates were chosen 
for each reconstruction, based on the JModelTest2 results 
(Darriba et al. 2012). For the NJ and ML reconstructions, 
tree reliability was evaluated with bootstrap analysis of 500 
replicates, while default settings were used for BI (No. gen-
erations: 1,000,000; burnin fraction: 0.25; No. of runs: 2; No. 
of chains: 4; outgroup set to G. violaceous), with substitution 
model and gamma‒ and invariable‒rates based on JModelT-
est2 results (Darriba et al. 2012). The trees generated were 
visualised using FigTree v.1.4.2 (Rambaut 2014). From each 
of the trees generated, a set of five tree metrics were calcu-
lated using TreeStat v.1.2 (Rambaut 2008). These figures 

were then imported into PAST v.3.08 (Hammer et al. 2001) to 
compute multivariate analyses (principal component analy-
ses‒PCA) and generate PCA plots. 

The tree metrics considered describe general features 
of the tree, its shape and topology. These were: 1) tree length 
(i.e., sum of branch lengths), 2) tree height (i.e., height of the 
root of the tree), 3) treeness (i.e., proportion of total length 
of tree taken up by internal branches; interpreted as a signal/
signal+noise measure) (cf. (Phillips et al. 2001)), 4) N_bar 
(i.e., mean number of nodes above an external node) (Kirk-
patrick & Slatkin 1993), and 5) cherry count (i.e., number of 
internal nodes that have only tips as children (McKenzie & 
Steel 2000). Although these measures are somehow inter–
correlated, they capture different aspects of the tree shape 
and may be used for comparisons (Agapow & Purvis 2002). 

Fig. 1. Workflow: Overview of the workflow performed. Cyanobacterial sequences from four loci (16S rRNA, rpoC1, 16S–23S–ITS or cp-
cBA–IGS) were aligned using five alignment algorithms (ClustalW, MAFFT, MUSCLE, PAGAN, PRANK), prior to optional alignment cura-
tion (i.e., de–gapping). Trees were built using maximum likelihood (ML), neighbour joining (NJ) and Bayesian inference (BI). Multivariate 
analysis was performed based on a number of metrics computed from each phylogenetic tree. The output of the multivariate analysis consisted 
of principal component analysis (PCA) plots highlighting the topological differences between trees, generated using alternative methods ad-
opted during steps 1 to 3.
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rithms at the hypervariable, highly–gapped 16S–23S 
ITS and cpcBA–IGS loci, where the longest alig-
nments were three‒ and two‒times longer than the 
shortest alignments, respectively. Curation also had a 
significant effect (especially for 16S–23S ITS) in redu-
cing the alignment length by at least 65%. These large 
fluctuations in alignment length, fraction of conserved 
sites etc., were reflected in the computed p–distance 
values. At the16S–23S ITS (in particular) and cpcBA–
IGS loci, the various alignment algorithms had dif-
ferent p–distance values both pre‒ and post‒curation 
(data not shown).

Comparison of phylogenetic reconstructions
For each of the four loci, a total of 30 trees were ge-
nerated, starting from 5 curated and 5 uncurated align-
ments (n = 120 trees in total). 

Effect of alignment algorithm on tree topology
Multivariate analysis based on the five tree metrics 
used allowed for the comparison of the shape and topo-
logy of trees produced by different alignments. For 16S 
rRNA, there were virtually no differences, as shown by 
the areas connecting the trees produced by the same 
algorithm which were clearly overlapping in the PCA 
plot (data not shown). Only two trees (PRANK/uncu-

Fig .3. rpoC1: Principal component analysis (PCA) plot highlighting 
the topological differences between trees generated using curated or 
uncurated alignments (panel A) and different tree–building methods 
(panel B). Sequence input consisted of cyanobacterial sequences 
from the rpoC1 locus. Trees were built using maximum likelihood 
(ML), neighbour joining (NJ) and Bayesian inference (BI). 

Fig. 2. 16S rRNA: Principal component analysis (PCA) plot high-
lighting the topological differences between trees generated using 
curated or uncurated alignments (panel A) and different tree–build-
ing methods (panel B). Sequence input consisted of cyanobacterial 
sequences from the 16S rRNA locus. Trees were built using maxi-
mum likelihood (ML), neighbour joining (NJ) and Bayesian infer-
ence (BI). 

Results

Comparison of alignment algorithms and effect of 
curation
Depending on the alignment algorithm used, the final 
alignment length varied: at all four loci, PAGAN al-
ways produced the longest alignments, while ClustalW 
alignments were consistently the shortest. The effect of 
alignment algorithm and curation were more evident at 
the loci containing variable regions (16S–23S ITS and 
cpcBA–IGS) than at the conserved or protein coding 
loci (16S rRNA and rpoC1).

For the uncurated alignments at the 16S rRNA 
and rpoC1 loci, there were negligible differences, be-
tween the five algorithms, in: alignment length and 
fraction of conserved‒, variable‒ and parsimony–in-
formative‒sites (data not shown). These alignments 
remained very similar, also after curation (there was 
< 20% change in alignment length, compared to pre–
curation). This was reflected in the negligible diffe-
rences between the five algorithms for the p–distance 
values, measured both pre‒ and post‒curation (data not 
shown). 

Conversely, large differences were seen when 
comparing the output of the various alignment algo-
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Effect of alignment curation on tree topology
Alignment curation affected tree topology in a clearly 
locus–specific manner. Differences between topologies 
of the trees produced from curated or uncurated align-
ments ranged from insignificant to extreme, increasing 
from 16S rRNA (curated alignment = uncurated align-
ment), to rpoC1, cpcBA–IGS and 16S–23S ITS (cura-
ted alignment ≠ uncurated alignment) (Figs. 2–5, Panel 
A). For the highly–gapped 16S–23S ITS hypervaria-
ble locus, the effects of curation were very obvious, 
with mainly two trees only (PRANK/uncurated/NJ and 
MAFFT/curated/BI) clearly intersecting the opposite 
cluster in the PCA plot (thus showing a topology more 
similar to the opposite cluster) (Fig. 5a).

Effect of tree–building method on tree topology
The tree–building method had a strong effect on tree 
topology, based on the metrics considered. Although 
locus specific, the extent of this effect was obvious 
for all loci considered. The 16S–23S ITS was the only 
marker where similar tree shapes were obtained from 
different tree–building methods (Fig. 5b). At this lo-
cus, NJ and ML trees largely coincided, whilst most 
trees obtained by BI were different. Conversely, at all 
other loci, the three tree–building methods produced 
considerably different topologies, with divergences 

rated/BI and MAFFT/curated/ML) appeared slightly 
spatially segregated from the others on the PCA plot, 
based on their metrics.

Also for rpoC1, the differences were very 
small, with possibly up to seven trees showing a mi-
nor spatial segregation on the PCA plot (MAFFT/un-
curated/NJ, PRANK/curated/NJ; PRANK/uncurated/
NJ, MUSCLE/uncurated/NJ, MAFFT/uncurated/ML, 
MAFFT/curated/ML, MUSCLE/curated/BI) (data not 
shown). 

On the other hand, for the 16S–23S ITS and cp-
cBA–IGS loci, some differences were noticeable and 
outlying tree topologies were relatively more evident 
(these trees appeared spatially segregated on the PCA 
plot, based on the metrics considered) (data not shown). 
For 16S–23S ITS, trees with possibly peculiar topolo-
gies were: MUSCLE/curated/BI, MUSCLE/uncura-
ted/BI and ClustalW/uncurated/ML. For cpcBA–IGS, 
there was a core of trees with comparable topologies, 
surrounded by a large number of trees (≈10) appea-
ring segregated from the others, based on their metrics 
(PAGAN/curated/BI, PRANK/curated/BI, ClustalW/
curated/BI, ClustalW/uncurated/BI, MUSCLE/uncu-
rated/ML, ClustalW/uncurated/ML, PRANK/curated/
ML, ClustalW/curated/ML, MUSCLE/curated/NJ, 
PRANK/uncurated/NJ) (data not shown). 

Fig. 5. 16S–23S–ITS: Principal component analysis (PCA) plot 
highlighting the topological differences between trees generated us-
ing curated or uncurated alignments (panel A) and different tree–
building methods (panel B). Sequence input consisted of cyanobac-
terial sequences from the 16S–23S–ITS locus. Trees were built using 
maximum likelihood (ML), neighbour joining (NJ) and Bayesian 
inference (BI). 

Fig. 4. cpcBA–IGS: Principal component analysis (PCA) plot high-
lighting the topological differences between trees generated using 
curated or uncurated alignments (panel A) and different tree–build-
ing methods (panel B). Sequence input consisted of cyanobacterial 
sequences from the cpcBA–IGS locus. Trees were built using maxi-
mum likelihood (ML), neighbour joining (NJ) and Bayesian infer-
ence (BI).
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between the methods progressively increasing from 
cpcBA–IGS, to rpoC1 and 16S rRNA. Interestingly, 
for the 16S rRNA locus, there was also high consis-
tency among trees produced by the same method. For 
instance, all NJ trees (or ML or BI) showed virtually 
identical topology, irrespective of alignment algorithm 
or curation option (Fig. 2b). This shows that, for 16S 
rRNA, the choice of tree–building method is the most 
important factor to consider when planning the phylo-
genetic reconstruction method. Tree–building method, 
particularly for this marker, is by far more critical than 
the choice of alignment algorithm or curation option 
(based on the dataset and metrics analysed in the pre-
sent study).

Discussion

Initially conceived to infer evolutionary relationships 
based on traditional (morphological and physiological) 
characters, phylogenetic reconstructions have become 
extremely popular with the advent of culture–indepen-
dent typing techniques and DNA sequencing technolo-
gies. The molecular systematics of a group is proposed 
through phylogenetic trees (graphical representations 
of the relationships among taxa) substantiated by the 
currently–available data, with the aim of inferring the 
“true” (un–observable) phylogeny of the taxon. In this 
context, the limitations shown by the more traditional 
approaches used for identification (e.g., morphologi-
cal, biochemical etc.), have contributed to, and justi-
fied, the explosion of molecular classification of cya-
nobacteria. 
In most of the 120 trees produced during the study, the 
Nostocales generally formed a monophyletic shallow–
branching cluster, irrespective of the locus. The Chroo-
coccales and Oscillatoriales were more deep–branching 
but their evolutionary relationships varied, depending 
on the reconstruction workflow and locus (the number 
of taxa per locus differed). As only three orders were 
included in the analysis, the degrees of resolution (soft 
polytomies) and of paraphyly of the orders yielded the 
major difference between the trees obtained from the 
same locus. Reconstructing the molecular phylogeny 
of the phylum cyanobacteria, however, lies beyond 
the objectives of the present paper. Instead, our study 
mainly aimed at quantifying and visualizing the uncer-
tainties, associated with alternative reconstruction me-
thods and at assessing the consequences of alternative 
analytical choices. The output of this study can still be 
used to suggest guidelines for investigating the mole-
cular phylogeny of cyanobacteria.

The combination of conserved and hypervaria-
ble regions within the 16S rRNA, have made this mar-
ker the gold standard for the systematics of bacteria 
and archaea since the molecule was first sequenced in 
the late 70’s (Brosius et al. 1978). This locus is impor-

tant also for the phylum cyanobacteria (Seo & Yokota 
2003; Lee et al. 2014; Rehakova et al. 2014) and the 
greater availability of 16 rRNA–based studies should 
be exploited to identify a “prototype tree”, represen-
ting the currently accepted systematics (Tomitani et 
al. 2006; Howard–Azzeh et al. 2014; Rehakova et al. 
2014). This step is essential to pinpoint the spatial posi-
tion in the PCA plot of the “16S rRNA prototype tree”, 
in comparison to all other 16S rRNA trees with alterna-
tive topologies under test. Moreover this tree can also 
be used for comparisons across loci.

During the present study, coherence with the 
topology of trees published in previous seminal pa-
pers (Tomitani et al. 2006; Howard–Azzeh et al. 2014; 
Rehakova et al. 2014) was found in several (similar) 
trees, produced by the ML tree–building method. This 
suggests that, with our dataset, this method was ade-
quate to obtain reliable 16S rRNA cyanobacterial sys-
tematics. 

When a benchmark “prototype tree” cannot be 
chosen a priori, or when more trees are equally plausi-
ble, the method described in the present paper study 
can only assess the reproducibility of the reconstruc-
tions, obtained from a given dataset using alternative 
options. However, optional display of metrics–associ-
ated vectors in the PCA plots (these are called biplots) 
can be very useful to identify possible relationships 
between the metrics’ value and the spatial pattern in 
the PCA plot. For instance, one ML 16S rRNA tree, 
generated based on a curated MUSCLE alignment, was 
characterized by numerous monophyletic clades and 
fully resolved taxa and this is a combination of options 
that appeared successful in our hands, for 16S rRNA. 
Paraphyletic clades of Oscillatoriales appeared basal 
to the tree, while the Chroococcales (e.g., Microcystis 
spp., Synechococcus sp.) fell into two strongly suppor-
ted clades (100% bootstrap support). The Nostocales 
formed a large monophyletic group with strong boot-
strap support (96%) (data not shown). Interestingly, the 

Fig. 6. Loci comparison: Principal component analysis (PCA) plot 
highlighting the reproducibility of trees generated by various com-
binations of phylogenetic reconstruction options, starting from cya-
nobacterial sequences from four loci: 16S rRNA, rpoC1, 16S–23S–
ITS or cpcBA–IGS. Multivariate analysis was performed based on 
a number of metrics computed from each tree. The figure shows the 
principal component analysis (PCA) plot, output of the multivariate 
analysis. 
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topology of this very robust tree (MUSCLE/curated/
ML) produced a treeness value higher than all other 
trees. During our study, high values of treeness (and 
possibly N_bar and cherry counts) were generally as-
sociated with fewer unresolved clades and (soft) poly-
tomies. 

As Fig. 6 shows, the metrics associated with the 
16S–23S ITS trees varied significantly and had higher 
average values, than the other loci. This translated into 
some 16S–23S ITS trees being characterized by fewer 
polytomies and more bifurcations and sister taxa. Con-
ceivably, this level of resolution is more useful and 
appropriate for reconstructions focusing on shallo-
wer phylogenies (e.g., species or sub–species level), 
rather than at phylum level. It is tempting to specu-
late that, once the systematics of a particular taxon is 
well–known, one metric (or a few) could be used as 
a proxy of “quality” of newly generated trees. Futu-
re implementations of the approach presented in this 
paper should also include metrics associated with the 
statistical support of branches.
Genetic constraints associated with protein coding loci 
are expected to produce fewer alignments gaps, and to 
increase the reproducibility of the results in response 
to the alternative workflows adopted. The present in-
vestigation clearly confirms that, because compared to 
16S–23S ITS, trees at the rpoC1 locus (and to a lesser 
extent cpcBA–IGS) clustered tightly showing relati-
vely little influence by the reconstruction method. In 
contrast, the set of topologies for the first locus were 
highly divergent (Fig. 6). These findings imply that for 
rpoC1 and cpcBA–IGS the combination of analytical 
options made for the reconstruction should be less cri-
tical than for 16S–23S ITS. 

As multiple plausible trees can be obtained, the 
comparison of topologies should be treated with cauti-
on as none of the tree metrics used in the present paper 
has been tested as a universal proxy of accuracy. When 
other tree–building methods are used (e.g., minimum 
evolution) trees showing minimum tree length (shor-
test tree length) may be selected as “true” trees (Van 
de Peer 2009). However, previous studies have also 
shown that, although curation results in shorter trees, 
this does not necessarily yield improved accuracy for 
other tree–building methods (Liu et al. 2009). One fin-
ding from the present analysis somewhat contrary to 
previous reports (Morrison & Ellis 1997; Lindgren & 
Daly 2007; Liu et al. 2009; Löytynoja 2012), is that 
alignment parameters did not appear to affect phylo-
genetic reconstructions and evolutionary inferences. 
This difference may be due to the present study direct-
ly comparing the topology of the trees generated with 
various alignment algorithms; conversely, previous 
studies directly scored the alignments generated, in 
comparison to a “prototype alignment”.

Earlier reports (Ogden & Rosenberg 2007; Liu 
et al. 2009; Sedaghatinia et al. 2009; Löytynoja et al. 
2012; Varon & Wheeler 2012), employed either si-

mulated data or simulated differences from a known 
data set, such that a “true–alignment” and a “true–tree” 
were known. These provided benchmark tools to score 
any experimenatlly–obtained output against. However, 
in the present study, the correct alignment was unk-
nown and therefore we were unable to benchmark the 
accuracy of the alignment algorithm, its curation and 
the tree–building method.

For the first time, a simple and universal me-
thod, applicable to any locus or organism, shows the 
different effects, produced by alternative alignment 
algorithms, gap–treatment options and tree–building 
methods, on the tree topology. While choosing one tree 
against another can be difficult, especially when a “re-
ference tree” is unavailable (like in the case of markers 
less validated than 16S rRNA), this paper highlights 
the consequences of choosing one workflow over ano-
ther. Although molecular methods and the resultant 
classifications (molecular systematics) should be still 
considered invaluable tools, pitfalls and limitations of 
these approaches must be kept in mind. 
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