Fottea 10(1): 99-113, 2010 | DOI: 10.5507/fot.2010.005

Composition and dynamics of microeukaryote communities in the River Danube.

Katalin É. Szabó-Taylor1,2,4, Keve T. Kiss1,*, Ramiro Logares2, Alexander Eiler3, Éva Ács1, Bence Tóth1, Stefan Bertilsson2
1 Hungarian Danube Research Station of the Ecological and Botanical Research Institute of the Hungarian Academy of Sciences, Göd, H-2131, Jávorka S. u. 14., Hungary
2 Limnology/Department of Evolution, Genomics and Systematics, Uppsala University, Norbyv. 18C, 75236, Uppsala, Sweden
3 Molecular Evolution/Department of Evolution, Genomics and Systematics, Uppsala University, Norbyv. 18C, 75236, Uppsala, Sweden
4 University of Exeter, Peninsula Medical School, St Luke's Campus, Magdalen Road, EX1 2LU, Exeter, United Kingdom

The diversity of microeukaryote communities inhabiting rivers is still poorly known. Here, we have analyzed the periphytic and planktonic microeukaryote communities present in one section of the River Danube by two different methods: 18S rRNA-based terminal restriction fragment length polymorphism with fragment sequencing and microscopical analysis of the phytoplankton and periphyton. Both data sets were then related to environmental variables. Molecular fingerprinting revealed diverse communities with fluctuating composition, with the majority of sequences affiliated to the groups Bacillariophyta, Synurophyceae and Chlorophyceae. This was in accordance with microscopical data. The total number of detected T-RFs during the study period was 145, with more than half of the T-RFs being restricted to either plankton or periphyton. This suggests that the likely different natural selection regimes experienced by microeukaryotes in these two environments may promote the presence of different lineages in each of them. Significant correlations were found between phytoplankton chlorophyll-a content, phosphorus content, temperature, and the T-RFLP pattern of the planktonic microeukaryotic community, suggesting that the former environmental factors are especially important in structuring the planktonic microeukaryote communities in the River Danube. These data, together with earlier studies suggest that molecular methods are an invaluable addition in pursuit of the better understanding of the diversity and fluctuation of freshwater microeukaryotic communities.

Keywords: River Danube; microeukaryotes; clone library; 18S rRNA; terminal restriction fragment length polymorphism, phytoplankton, microscopy

Received: April 25, 2009; Accepted: August 11, 2009; Published: March 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Szabó-Taylor, K.É., Kiss, K.T., Logares, R., Eiler, A., Ács, É., Tóth, B., & Bertilsson, S. (2010). Composition and dynamics of microeukaryote communities in the River Danube. Fottea10(1), 99-113. doi: 10.5507/fot.2010.005
Download citation

References

  1. Ács, É., Szabó, K.É., Kiss, Á.K., Tóth, B., Záray, G.Y. & Kiss, K.T. (2006): Investigation of epilithic algae on the River Danube from Germany to Hungary and the effect of a very dry year on the algae of the River Danube. - Arch. Hydrobiol. Suppl 158/3 Large Rivers 16: 389-417. Go to original source...
  2. Alverson, A.J., Jansen, R.K. & Theriot, E.C. (2007): Bridging the Rubicon: Phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. - Mol. Phylogenet. Evol. 45: 193-210. Go to original source...
  3. Aponasenko, A.D., Shchur, L.A. & Lopatin, V.N. (2007): Relationship of the chlorophyll content with the biomass and disperse structure of phytoplankton. - Doklady Biological Sciences 412: 710-712. Go to original source...
  4. Bereczky, M.Cs., Oertel, N. & Nosek, J.N. (1983): Die tiefenabhängige Entwicklung des Protozoenaufwuchses auf künstlichem Substrat in der Donau. I: Die Frage der Tiefenschichtung (The Protozoa communities' development in function of depth on artificial substrates in the River Danube. I: The question of stratification). - Arch. Hydrobiol. Suppl. Monogr. Beitr. 7: 37-62. Go to original source...
  5. Bereczky, M.Cs. & Nosek, J.N. (1994): Composition and feeding spectrum of protozoa in the River Danube, with particular reference to planktonic Ciliata. - Limnologica 24: 23-28.
  6. Boenigk, J., Pfandl, K., Stadler, P. & Chatzinotas, A. (2005): High diversity of the 'Spumella-like' flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. - Environ. Microbiol. 7: 685-697. Go to original source...
  7. Buczkó, K. & Ács, É. (1997): Zonation of periphytic algae in two Hungarian shallow lakes (Lake Velence and Fertő). - Acta Bot. Hung. 40: 21- 34.
  8. Díez, B., Pedrós-Alió, C., Marsh, T.L. & Massana, R. (2001): Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. - Appl. Environ. Microbiol. 67: 2942-2951. Go to original source...
  9. Díez, B., Massana, R., Estrada, M. & Pedrós-Alió, C. (2004): Distribution of eukaryotic picoplankton assemblages across hydrographic fronts in the Southern Ocean, studied by denaturing gradient gel electrophoresis. - Limnol. Oceanogr. 49: 1022-1034. Go to original source...
  10. Dorigo, U., Bérard, A. & Humbert, J.F. (2002): Comparison of eukaryotic phytobenthic community composition in a polluted river by partial 18S rRNA gene cloning and sequencing. - Microbiol. Ecol. 44: 372-380. Go to original source...
  11. Dorigo, U., Lefranc, M., Leboulanger, C., Montuelle, B. & Humbert, J.F. (2009): Spatial heterogeneity of periphytic microbial communities in a small pesticide-polluted river. - FEMS Microbiol. Ecol. 67: 490-501. Go to original source...
  12. Egert, M. & Friedrich, M.W. (2003): Formation of pseudo-terminal restriction fragments, a PCR-related bias affecting terminal restriction fragment length polymorphism analysis of microbial community structure. - Appl. Environ. Microbiol. 69: 2555-2562. Go to original source...
  13. Eiler, A. & Bertilsson, S. (2004): Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. - Environ. Microbiol. 6: 1228-1243. Go to original source...
  14. Falkowski, P.G., Fenchel, T. & Delong, E.F. (2008): The microbial engines that drive Earth's biogeochemical cycles. - Science 320: 1034- 1039. Go to original source...
  15. Felföldy, L. (1987): The biological classification of water quality, 4th revised edition [A biológiai vízminősítés]. - 263 pp., Vízügyi Hidrobiológia 16. VGI, Budapest.
  16. Finlay, B.J. (2002): Global dispersal of free-living microbial eukaryote species. - Science 296: 1061-1063. Go to original source...
  17. Goodwin, T.W. (ed.) (1976): Chemistry and biochemistry of plant pigments. - 235 pp., Academic Press, London.
  18. Guillou, L., Chrétiennot-Dinet, M.J., Medlin, L.K. et al (1999): Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). - J. Phycol. 35: 368-381. Go to original source...
  19. Hughes Martiny, J.B., Bohannan, B.J.M., Brown, J.H., Colwell, R.K., Fuhrman, J.A., Green, J.L., Horner-Devine, MC., Kane, M., Krumins, J.A., Kuske, C.R., Morin, P.J., Naeem, S., Øvreås, L., Reysenbach, A-L., Smith, V.H. & Staley, J.T. (2006): Microbial biogeography: putting microorganisms on the map. - Nat.Rev. Microbiol. 4: 102-112. Go to original source...
  20. Kim, E., Wilcox, L., Graham, L. & Graham, J. (2004): Genetically distinct populations of the dinoflagellate Peridinium limbatum in neighboring Northern Wisconsin lakes. - Microbial. Ecol. 48: 521-527. Go to original source...
  21. Kiss, Á.K., Ács, É., Kiss, K.T. & Török, J.K. (2009): Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). - European Journal of Protistology doi:10.1016/j.ejop.2008.08.002 Go to original source...
  22. Kiss, K.T. (l986): Species of the Thalassiosiraceae in the Budapest section of the Danube. Comparison of samples collected in l956-63 and l979-83. - In: Ricard, M. (ed.): Proceedings of the 8th International Diatom Symposium. - pp. 23-31, O. Koeltz, Koenigstein.
  23. Kiss, K.T. (1987): Phytoplankton studies in the Szigetköz section of the Danube during 1981- 1982. - Arch. Hydrobiol. 78 Algological Studies 47: 247-273.
  24. Kiss, K.T. (1994): Trophic level and eutrophication of the River Danube in Hungary. - Verh. internat. Verein. Limnol. 25: 1688-1691. Go to original source...
  25. Kiss, K.T. (2000): Növekedett-e a Duna trofitási szintje a Bősi-vízlépcső hatására?. [Has the trophic level of the River Danube increased as an effect of the Gabčikovo (Bős) barrage]. - Hidrológiai Közlöny 80: 316-318.
  26. Kiss, K.T. & Genkal, S.I. (1993): Winter blooms of centric diatoms in the River Danube and in its side arms near Budapest. - Hydrobiologia 269/270: 317-325. Go to original source...
  27. Kiss, K.T. & Schmidt, A. 1998. Changes of the Chlorophyta species in the phytoplankton of the Hungarian Section of the Danube river during the last decades (1961-1997). - Biologia 53: 509-518.
  28. Kruskopf, M. & Flynn, K.J. (2006): Chlorophyll content and fluorescence responses cannot be used to gauge reliably phytoplankton biomass, nutrient status or growth rate. - New Phytologist, 169: 841-842. Go to original source...
  29. Lefranc, M., Thènot, A., Lepère, C. & Debroas, D. (2005): Genetic diversity of small eukaryotes in lakes differing by their trophic status. - Appl. Environ. Microbiol. 71: 5935-5942. Go to original source...
  30. Lepère, C., Boucher, D., Jardillier, L., Domaizon, I. & Debroas, D. (2006): Succession and regulation factors of small eukaryote community composition in a lacustrine ecosystem (Lake Pavin). - Appl. Environ. Microbiol. 72: 2971- 2981. Go to original source...
  31. Logares, R. (2006): Does the global microbiota consist of a few cosmopolitan species? - Ecología Austral 16: 85-90.
  32. Logares, R., Shalchian-Tabrizi, K., Boltovskoy, A. & Rengefors, K. (2007): Extensive dinoflagellate phylogenies indicate infrequent marine- freshwater transitions. - Mol. Phylogenet. Evol. 45: 887-903. Go to original source...
  33. Lopez-Garcia, P. & Moreira, D. (2008): Tracking microbial biodiversity through molecular and genomic ecology. - Research in Microbiology 159: 67-73. Go to original source...
  34. López-García, P., Rodríguez-Valera, F., Pedrós- Alió, C. & Moreira, D. (2001): Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. - Nature 409: 603-607. Go to original source...
  35. López-García, P., Philippe, H., Galle, F. & Moreira, D. (2003): Autochtonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. - PNAS 100: 697-702. Go to original source...
  36. Lozupone, C.A. & Knight, R. (2007): Global patterns in bacterial diversity. - PNAS 104: 11436-11440. Go to original source...
  37. Lund, J.W.G., Kipling, C. & Le Cren, E.D. (1958): The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. - Hydrobiologia 11: 143-170. Go to original source...
  38. Massana, R., Balagué, V., Guillou, L., Romari, K., Groisillier, A., Valentin, K. & Pedrós-Alío, C. (2004): Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. - FEMS Microbiol Ecology 50: 231-243. Go to original source...
  39. Montresor, M., Sgrosso, S., Procaccini, G. & Kooistra, W.H.C.F. (2003): Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): evidence for cryptic species. - Phycologia 42: 56-70. Go to original source...
  40. Moon-van der Staay, S.Y., De Wachter, R. & Vaulot, D. (2001): Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. - Nature 409: 607-610. Go to original source...
  41. Møestrup, O. & Thomsen, H.A. (1980): Preparation of shadow-cast whole-mounts. - In: Gnatt, E. (ed.): Handbook of phycological methods. Developmental and cytological methods. - pp. 385-390, Cambridge University Press 1980, Cambridge.
  42. MSZ ISO 7150-1:1992 (1992): Determination of ammonium in water.
  43. Neefs, J.M., Van de Peer, Y., De Rijk, P., Chapelle, S. & De Wachter, R. (1993): Compilation of small subunit RNA structures. - Nucleic Acids Research, 21: 3025-3049. Go to original source...
  44. Romari, K. & Vaulot, D. (2004): Composition and temporal variability of picoeukaryote communities at a coastal site of the English Channel from 18SrDNA sequences. - Limnol. Oceanogr. 49: 784-798. Go to original source...
  45. Shalchian-Tabrizi, K., Brate, J., Logares, R., Klaveness, D., Berney, C. & Jakobsen, K.S. (2008): Diversification of unicellular eukaryotes: cryptomonad colonizations of marine and freshwaters inferred from revised 18S rRNA phylogeny. - Environ. Microbiol. 10: 2635-2644. Go to original source...
  46. Shannon, C.E. & Weaver, W. (1949): The mathematical theory of communication. - 117 pp., Univ. Illionis Press Urbana III, Illionis.
  47. Statistica (StatSoft, Inc. (2005). STATISTICA (data analysis software system), version 7.1. www. statsoft.com.)
  48. Szabó, K.É., Ács, É., Kiss, K.T., Eiler, A., Makk, J., Tóth, B. & Bertilsson, S. (2007): Periphyton- based water quality analysis of a large river (River Danube, Hungary): exploring the potential of molecular fingerprinting for biomonitoring. - Arch. Hydrobiol. Suppl. Large Rivers 17: 365-382. Go to original source...
  49. Utermöhl, H. (1958): Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. - Mitt. Internat. Verein. Limnol. 9: 1-38. Go to original source...